Sessile Droplet Evaporation on Wall with Radial Temperature Gradient

Publish Year: 1403
نوع سند: مقاله ژورنالی
زبان: English
View: 24

This Paper With 16 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_JAFM-17-5_012

تاریخ نمایه سازی: 7 اسفند 1402

Abstract:

Droplet evaporation coupled with gravity and surface tension on a wall with the radial temperature gradients is numerically studied with the arbitrary Lagrangian‒Eulerian method. The influence of the wall temperature distribution on the droplet evaporation process, which is less considered in the existing literature, is mainly discussed. The droplet temperature coefficient of the surface tension and the viscosity on the droplet profile evolution, flow, heat and mass transfer characteristic are also discussed. The results indicate that the droplets become flat first and then retract under the gravity and Marangoni convection during droplet evaporation. There are two high-velocity regions inside the evaporating droplet. One region is at the droplet axis, in which fluid flows to the wall from the droplet top. The other region is near the droplet surface, where fluid flows to the droplet top. There are turning points on the two sides of which the influence of wall temperature distribution on the ratio between the droplet height and the radius of the three-phase contact line (h/Rc), the velocity in the droplet and the surface temperature converts. All of them are larger before the turning point when the wall temperature slope is positive. After the turning point, these are reversed. For both h/Rc and average surface temperature, there is one turning point, which are t*=۱.۶۳×۱۰-۴ and t*=۱.۰۵×۱۰-۴, respectively. For maximum velocity and average velocity in droplet, there are two turning points, which are both t*=۱.۶۳×۱۰-۴ and t*=۱.۷×۱۰-۵. The droplet morphology changes more obviously when it is with a greater temperature coefficient of surface tension. Moreover, the turning point is delayed from t*=۶.۴۱×۱۰-۵ while α is ۸ K/m to t*=۷.۹۱×۱۰-۵ while α is -۸ K/m, which indicates that the negative wall temperature slope is beneficial to inhibit the Marangoni effect on droplet evaporation.

Authors

Z.G. Lei

Zhejiang Juhua Technology Center Co., Ltd, Quzhou ۳۲۴۰۰۴, PR China

C. Q. Shen

College of Electrical, Energy and Power Engineering, Yangzhou University, Yangzhou ۲۲۵۱۲۷, PR China

C. C. Song

College of Electrical, Energy and Power Engineering, Yangzhou University, Yangzhou ۲۲۵۱۲۷, PR China

F. Yao

Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu ۲۱۵۰۰۹, PR China

X. D. Liu

Zhejiang Juhua Technology Center Co., Ltd, Quzhou ۳۲۴۰۰۴, PR China

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • Albernaz, D. L., Amberg, G., & Do-Quang, M. (۲۰۱۶). Simulation ...
  • Al-Sharafi A., Sahin, A. Z., Yilbas, B. S., & Shuja, ...
  • Al-Sharafi, A., Yilbas, B. S., Ali, H., & Sahin, A. ...
  • Barmi, M. R., & Meinhart, C. D. (۲۰۱۴). Convective flows ...
  • Bi, S. S., Cui, J. W., Ma, L. J., Zhao, ...
  • Bi, W., Wu, X., & Yeow, E. K. (۲۰۱۲). Unconventional ...
  • Chang, S. T., & Velev, O. D. (۲۰۰۶). Evaporation-induced particle ...
  • Cheng, P., & Wu, H. Y. (۲۰۰۶). Mesoscale and microscale ...
  • Deegan, R. D., Bakajin, O., Dupont, T., Huber, G., Nagel, ...
  • Deegan, R. D. (۲۰۰۰). Pattern formation in drying drops. Physical ...
  • Erbil, H. Y., Mchale, G., & Newton, M. I. (۲۰۰۲). ...
  • Gao, M., Kong, P., & Zhang, L. X. (۲۰۱۸). Evaporation ...
  • Girard, F., Antoni, M., & Sefiane, K. (۲۰۰۸). On the ...
  • Hu, H., & Larson, R. G. (۲۰۰۵). Analysis of the ...
  • Hu, H., & Larson, R. G. (۲۰۰۲). Evaporation of a ...
  • Hu, H., & Larson, R. G. (۲۰۰۶). Marangoni effect reverses ...
  • Hu, W. R., & Imaishi N. (۲۰۰۰). Thermocapillary flow in ...
  • Huang, Y., Zhang, C., & Meng, S. (۲۰۲۲). Molecular origin ...
  • Kita, Y., Askounis, A., Kohno, M., Takata, Y., Kim, J., ...
  • Liu, B., Li, Z., Bi, L., Theodorakis, P. E., Liu, ...
  • Manetti, L. L., Ribatski, G., de Souza, R. R., & ...
  • Nerger, B. A., Brun, P. T., & Nelson, C. M. ...
  • Ristenpart, W. D., Kim, P. G., Domingues, C., Wan, J., ...
  • Savino, R., & Fico, S. (۲۰۰۴). Transient Marangoni convection in ...
  • Savino, R., Paterna, D., & Favaloro, N. (۲۰۰۲). Buoyancy and ...
  • Scardovelli, R., & Zaleski, S. (۱۹۹۹). Direct numerical simulation of ...
  • Sefiane, K., Moffat, J. R., Matar, O. K., & Craster, ...
  • Shi, X., Lin, L., Chen, S., Chao, S., Zhang, W., ...
  • Song, H., Lee, Y., Jin, S., S., Kim, H. Y., ...
  • Tekin, E., de Gans, B. J., & Schubert, U. S. ...
  • Thiele, U., & Knobloch, E. (۲۰۰۴) Thin liquid films on ...
  • Tsoumpas, Y., Dehaeck, S., Rednikov, A., & Colinet, P. (۲۰۱۵). ...
  • Wang, H. T., Wang, Z. B., Huang, L. M., Mitra, ...
  • Wang, T. S., & Shi, W. Y. (۲۰۲۰). Transition of ...
  • Xu, X., Di, Y., & Yu, H. (۲۰۱۸). Sharp-interface limits ...
  • Xu, Y., Zhang, N., Yang, W. J., & Vest, C. ...
  • Yang, K., Hong, F. J., & Cheng, P. (۲۰۱۴). A ...
  • Yin, J., Ye, H., Xia, X., Yi, L., & Wang, ...
  • Zhang, Z., Li, J., & Jiang, P. X. (۲۰۱۳). Experimental ...
  • Zhu, J. L., Shi, W. Y., & Feng, L. (۲۰۱۹). ...
  • Zhu, J. L., & Shi, W. Y. (۲۰۲۳). Instability patterns ...
  • نمایش کامل مراجع