سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

Modeling Graphene-based PIN-FET with Quantum Dot Channel

Publish Year: 1402
Type: Journal paper
Language: English
View: 127

This Paper With 15 Page And PDF Format Ready To Download

Export:

Link to this Paper:

Document National Code:

JR_JOPN-8-4_005

Index date: 26 February 2024

Modeling Graphene-based PIN-FET with Quantum Dot Channel abstract

Abstract: Discrete energy levels of quantum dots (QD) have electronic and optoelectronic applications. In this paper, a novel graphene nanoribbon (GNR) field effect transistor (FET) is modeled numerically using the NEGF formalism. In the new device model of this paper, the channel region is composed of one or two QDs, made by only one metallic gate electrode. This model utilizes a semiconductor armchair graphene nanoribbon through which the current may pass. The two highly doped ends of GNR act as source and drain contacts. At this unique model, one or two quantum dots form on GNR channel.  The discreteness of energy levels of the two coupled quantum dots, revealed by applying gate voltage, gives rise to resonant tunneling.  Resonant tunneling through these levels results in negative differential conductance. The coupling between QDs determines the current characteristics of device. Step-wise increment of current by increasing drain voltage manifests QDs discrete energy levels.

Modeling Graphene-based PIN-FET with Quantum Dot Channel Keywords:

Modeling Graphene-based PIN-FET with Quantum Dot Channel authors

Karim Milanchian

Department of Physics, Payame Noor University, Tehran, Iran

Hakimeh Mohammadpour

Department of Physics, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, ۵۳۷۱۴-۱۶۱ Tabriz, Iran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
Hasanirokh, A Asgari and S Mohammadi, Infrared navigation—Part I: An ...
Available:https://jeos.springeropen.com/articles/۱۰.۱۱۸۶/s۴۱۴۷۶-۰۲۱-۰۰۱۷۳-۸[۲] H. Mohammadpour, Quantum dot resonant tunneling FET on graphene, ...
D. Ghosh, K. Sarkar K, P. Devi P, K. H. ...
X. Shi, X. Liu and H. Zeng, ZrO۲ quantum dots/graphene ...
Available: https://ieeexplore.ieee.org/document/۸۳۳۱۹۶۸[۶] I. Nikitskiy, S. Goossens, D. Kufer, T. Lasanta, ...
Available: https://www.nature.com/articles/ncomms۱۱۹۵۴[۷] V. Ryzhii, The theory of quantum-dot infrared phototransistors, ...
Available: https://iopscience.iop.org/article/۱۰.۱۰۸۸/۰۲۶۸-۱۲۴۲/۱۱/۵/۰۱۸[۸] Konstantatos, M. Badioli, L. Gaudreau Gerasimos, J. Osmond, ...
Available: https://www.nature.com/articles/nnano.۲۰۱۲.۶۰[۹] Akbari Eshkalak, R. Faez. A computational study on ...
Available: https://jopn.marvdasht.iau.ir/article_۲۴۲۷.html[۱۰] Rohani, A. A. Emrani Zarandi. Designing a novel ...
Available: https://jopn.marvdasht.iau.ir/article_۵۸۰۰.html[۱۱] Rahimian. Controlling ambipolar current in a junctionless Tunneling ...
Available: https://www.sciencedirect.com/science/article/abs/pii/S۱۵۷۴۰۱۳۷۱۸۳۰۱۷۰۹[۲۵] M. R. Mohebbifar. Study of the Purcell factor ...
K. I. Bolotin, K. J. Sikes, Z. Zhang, M. Klima, ...
نمایش کامل مراجع