An Introduction to Lightweight Flexible Nonlinear Composite (LFNLC) and Elastic Composite, Reinforced Lightweight Concrete (ECRLC) as the Cementitious LFNLC

Publish Year: 1402
نوع سند: مقاله ژورنالی
زبان: English
View: 39

This Paper With 20 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_IJIEN-3-3_002

تاریخ نمایه سازی: 9 اسفند 1402

Abstract:

Here, a new class of high-performance composites, called “Lightweight Flexible Nonlinear Composites (LFNLC)”, has been briefly introduced. This class of composites has its own structural and functional characteristics. Nonlinear behavior in bending and porous or porous-like texture are instances of such characteristics. - Cementitious LFNLC is termed “Elastic Composite, Reinforced Lightweight Concrete (ECRLC)”. The ECRLC provides lightweight beams with substantial strain capability, resilience modulus and toughness in bending, resulting in a considerable increase in bearing capacity while weighing significantly less. The failure mode in low-height and ultra-lightweight beams made of the ECRLC is not compressive and brittle. - This lightweight, flexible composite is a non-monopolistic, versatile and comparatively low-price material. Likewise, the virtues such as resilience and flexibility, workability, lightness, durability, and high formability are important in architecture. - In general, lightweight and integrated construction has a key importance in earthquake resistance. Therefore, the ECRLC can be especially beneficial in earthquake-prone regions. - By taking advantage of the resilience and flexibility of this formable system, it can also be used to build non-brittle reinforced ultra-lightweight and insulation sandwich panels, safe and lightweight guards, and shock-resistant structures. In addition, they are utilizable in some infrastructures and explosion-proof pieces with suitable behavior, resilience, and toughness. - This work presents a practical method for converting a rigid solid into a flexible material with lower density or increasing the elasticity of a flexible material while decreasing the density. Essentially, this method entails creating a porous or porous-like texture in the material, reinforcing appropriately, and providing it with the necessary integrity. (For example, properly dispersing lightweight aggregates all over the reinforced, conjoined matrix can produce a porous-like texture.) By this process, the resilience modulus and toughness in bending rise and the density reduces. - This paper briefly discusses the functional and structural characteristics of LFNLCs, some applications, and a Reproducible example of the ECRLC.Here, a new class of high-performance composites, called “Lightweight Flexible Nonlinear Composites (LFNLC)”, has been briefly introduced. This class of composites has its own structural and functional characteristics. Nonlinear behavior in bending and porous or porous-like texture are instances of such characteristics. - Cementitious LFNLC is termed “Elastic Composite, Reinforced Lightweight Concrete (ECRLC)”. The ECRLC provides lightweight beams with substantial strain capability, resilience modulus and toughness in bending, resulting in a considerable increase in bearing capacity while weighing significantly less. The failure mode in low-height and ultra-lightweight beams made of the ECRLC is not compressive and brittle. - This lightweight, flexible composite is a non-monopolistic, versatile and comparatively low-price material. Likewise, the virtues such as resilience and flexibility, workability, lightness, durability, and high formability are important in architecture. - In general, lightweight and integrated construction has a key importance in earthquake resistance. Therefore, the ECRLC can be especially beneficial in earthquake-prone regions. - By taking advantage of the resilience and flexibility of this formable system, it can also be used to build non-brittle reinforced ultra-lightweight and insulation sandwich panels, safe and lightweight guards, and shock-resistant structures. In addition, they are utilizable in some infrastructures and explosion-proof pieces with suitable behavior, resilience, and toughness. - This work presents a practical method for converting a rigid solid into a flexible material with lower density or increasing the elasticity of a flexible material while decreasing the density. Essentially, this method entails creating a porous or porous-like texture in the material, reinforcing appropriately, and providing it with the necessary integrity. (For example, properly dispersing lightweight aggregates all over the reinforced, conjoined matrix can produce a porous-like texture.) By this process, the resilience modulus and toughness in bending rise and the density reduces. - This paper briefly discusses the functional and structural characteristics of LFNLCs, some applications, and a Reproducible example of the ECRLC.

Authors

Kamyar Esmaeili *

Research and Development Department of Nogamsazegan, Tehran, Iran.

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • • Aadithiya, K., Chandrasekaran, DP. (2017). Review Paper on Usage ...
  • • Abed, H. (2019). Production of Lightweight Concrete by Using ...
  • • Adhikary, S., Rudzionis, Z., & Zubrus, M. (2019). Investigations ...
  • • Al Saffar, D. M., Al Saad, A. J., & ...
  • • Altera, A. Z., Bayraktar, O. Y., Bodur, B., & ...
  • • American Concrete Institute (ACI). (2017). ACI Manual of Concrete ...
  • • Anas, S., Shariq, M., Alam, M., & Umair, M. ...
  • • Babu, K. G., & Babu, D. S. (2003). Behaviour ...
  • • Bai, L., Li, Y., Hou, C., Zhou, T., & ...
  • • Bhuinyan, S. S., Dahatonde, S., Jagtap, A., Baghele, S., ...
  • • Castañeda, P. P. (2004). Linear Comparison Methods for Nonlinear ...
  • • Deng, B.-Y., Li, L.-Z., Tan, D., Uddin, M. N., ...
  • • Dixit, A., Pang, S. D., Kang, S., & Moon, ...
  • • Du, H. (2019). Properties of ultra-lightweight cement composites with ...
  • • El-Kady, H., Amer, O., Ali, A. H., & Haggag, ...
  • • Esmaeili, K. (2004). Elastic Composite, Reinforced Lightweight Concrete and ...
  • • Esmaeili, K. (2007). A Review on Elastic Composite Reinforced ...
  • [A similar paper with the similar title, by K. Esmaeili, ...
  • • Esmaeili, K. (2011). The Non-brittle, Insulation Lightweight Concrete Plaster ...
  • • Esmaeili, K. (2015). Elastic Composite, Reinforced Lightweight Concrete as ...
  • [The Newer Version Retrieved in 2019: https://www.academia.edu/3440017; https://sites.google.com/site/newstructure1 & https://sites.google.com/site/ecrlc1 ...
  • [A similar paper with the similar title, by K. Esmaeili, ...
  • • Esmaeili, K. (2018). Lightweight and Integrated Construction, the Pivotal ...
  • • Esmaeili, K. (2021). A Short Review on Lightweight Resilient ...
  • • Esmaeili, K. (2022a). Lightweight Flexible Nonlinear Composite (LFNLC) and ...
  • [Also, presented at: The 6th International Conference on Applied Researches ...
  • • Esmaeili, K. (2022b). Simple and Experienced Use of Elastic ...
  • [Also, presented at: The 6th International Conference on Applied Researches ...
  • • Feng, G., Zhu, D., Guo, S., Rahman, M. Z., ...
  • • Feng, X., Gong, B., & Zhao, T. (2022). Study ...
  • • Goel, P., Kumar, R., & Bhattacharjee, B. (2022). Hybrid ...
  • • Guo, H., Shi, C., Guan, X., Zhu, J., Ding, ...
  • • Hanif, A., Lu, Z., Sun, M., Parthasarathy, P., & ...
  • • Hodges, D. H. (2006). Nonlinear composite beam theory: American ...
  • • Huang, Z., Wang, F., Zhou, Y., Sui, L., Krishnan, ...
  • • Jhansi, C., Reddy, VM, Reddy, RU. (2023). A Review ...
  • • Kaisha, A., Jamil, M., Raman, S., Zain, M., & ...
  • • Kan, A., & Demirboğa, R. (2009). A novel material ...
  • • Karim, F. (2021). Influence of internal curing on the ...
  • • Kekanović, M., Kukaras, D., Čeh, A., & Karaman, G. ...
  • • Khatib, J., Herki, B., & Elkordi, A. (2019). Characteristics ...
  • • Kočí, V., Černý, R. J. C., & Composites, C. ...
  • • Kumar, K., & Baskar, K. (2015). Development of Ecofriendly ...
  • • Laukaitis, A., Žurauskas, R., & Kerien, J. (2005). The ...
  • • Lee, J.-H., Kang, S.-H., Ha, Y.-J., Hong, S.-G., & ...
  • • Li, V. (2019). Introduction to Engineered Cementitious Composites (ECC), ...
  • • Lu, J., Jiang, J., Lu, Z., Li, J., & ...
  • • Luković, M., Huang, Z., Hordijk, D., & Schlangen, E. ...
  • • Ma, X., Liu, J., & Shi, C. (2019). A ...
  • • Mahmood, R. A., & Kockal, N. U. J. S. ...
  • • Michel, J.-C., & Suquet, P. (2004). Computational analysis of ...
  • • Miller, L., & Penta, R. (2021). Homogenized balance equations ...
  • • Mishra, S., Dashore, S. (2020). Analysis of Fiber Reinforced ...
  • Investigation of Oblique Blast Loading on Trapezoidal Corrugated Core Sandwich Panels; Experimental and Numerical Study [مقاله ژورنالی]
  • Influence of Debris Impact on Progressive Collapse of a Steel Structure Building [مقاله ژورنالی]
  • • Moon, A., Patel, A. (2021). Sustainable Construction Using EPS ...
  • • Nadh, V., & Muthumani, K. (2017). Critical Review of ...
  • • Okeyinka, O. M., Oloke, D. A., & Khatib, J. ...
  • • Olofinnade, O., Chandra, S., & Chakraborty, P. (2021). Recycling ...
  • • Pakravan, H. R., & Ozbakkaloglu, T. (2019). Synthetic fibers ...
  • • Ponte Castañeda, P., & Suquet, P. (2001). Nonlinear composites ...
  • • Prasittisopin, L., Termkhajornkit, P., & Kim, Y. H. (2022). ...
  • • Rahimi, H., Bina, G., & Esmaeili, K. (2001). The ...
  • • Ramezanali, J., Gharianpour, Z., & Salehi, A. Z. (2022). ...
  • • Rico, S., Farshidpour, R., & Tehrani, F. M. (2017). ...
  • • Roberz, F., Loonen, R., Hoes, P., & Hensen, J. ...
  • • Şahmaran, M., & Li, V. C. (2020). Engineered Cementitious ...
  • • Saravanan, A., & Mohanraj, B. (2018). 3D Polystyrene Wire ...
  • • Shaaban, I., Shaheen, Y., Elsayed, E., Kamal, O., & ...
  • Dynamic and Quasi-Static Plastic Behavior of Single and Nested Thin-Walled Square Tubes Under Lateral Loading [مقاله ژورنالی]
  • • Shi, W., Miao, L., Luo, J., Wang, J., & ...
  • • Sikora, P., & Chung, S. Y. (2020). Cement-based Composites: ...
  • • Sun, Y., Li, C, You, J, Bu, C, Yu, ...
  • • Tahuni, S. (1991). Strength of Materials. 6th ed, (Trans. ...
  • • Tayal, A., Gupta, G., Choudhary, P., Tomar, T., Kumar, ...
  • • Viera, L. P., & Carpio, V. (2019). Composite Cementitious ...
  • • Vilches, J. (2014). The Development of Novel Infill Materials ...
  • • Wang, L., Aslani, F., Hajirasouliha, I., & Roquino, E. ...
  • • Wang, R., & Meyer, C. (2012). Performance of cement ...
  • • Wei, H., Wu, T., & Yang, X. (2020). Properties ...
  • • Wu, M., Johannesson, B., & Geiker, M. (2012). A ...
  • • Xiao, J., Han, N., Li, Y., Zhang, Z., & ...
  • • Xu, F., Lin, X., & Zhou, A. (2021). Performance ...
  • • Yang, L., Shi, C., Liu, J., & Wu, Z. ...
  • • Yoo, D., & Banthia, N. (2019). Impact Resistance of ...
  • • Zhou, Y., Xi, B., Sui, L., Zheng, S., Xing, ...
  • نمایش کامل مراجع