Enhancing water pump failure prediction using machine learning: a focus on less-explored variables
Publish Year: 1402
Type: Journal paper
Language: English
View: 112
This Paper With 12 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
این Paper در بخشهای موضوعی زیر دسته بندی شده است:
Export:
Document National Code:
JR_CAND-2-3_001
Index date: 29 February 2024
Enhancing water pump failure prediction using machine learning: a focus on less-explored variables abstract
In recent years, there has been a surge in research exploring the potential of Machine Learning (ML) for predicting water pump failures. While some studies have focused on supervised approaches, others have delved into unsupervised methods. However, the challenge lies in identifying the key variables crucial for accurate failure predictions. This study bridges this gap by consulting domain experts to discern essential variables, including water catchment area level, water quality index, lubrication frequency, water reservoir temperature, operating time, and power interruptions count. Employing supervised ML methods, specifically multiple regression and decision tree cart, the research aims to enhance the precision of failure predictions, shedding light on less-explored variables that play a significant role in pump failure.
Enhancing water pump failure prediction using machine learning: a focus on less-explored variables Keywords:
Enhancing water pump failure prediction using machine learning: a focus on less-explored variables authors
Soheil Azizi Borojerdi
Faculty of Accounting and Management, Allameh Tabatabae University, Tehran, Iran.
Goran Cirovic
Faculty of Technical Sciences, University of Novi Sad, Trg Dositeja Obradovica-۶, ۲۱۰۰۰ Novi Sad, Serbia.
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :