Portfolio design and optimization within the framework of the Markov chain
Publish Year: 1403
نوع سند: مقاله ژورنالی
زبان: English
View: 148
This Paper With 9 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJNAA-15-4_024
تاریخ نمایه سازی: 25 اسفند 1402
Abstract:
Return and risk are significant parameters in selecting an optimal portfolio, depending on the portfolio return distribution. In a stochastic process, the Markov property causes the future distribution of a random process to be measurable according to the state-transition matrix and the initial process state. According to the main idea of the present study in the optimal portfolio selection, portfolio weights are chosen in a way that the Markov property is established for the portfolio return series and the distribution of future portfolio returns is close to the distribution of investor's expected returns; hence, K-L divergence (Kullback–Leibler divergence) is utilized as a criterion of closeness. Using this idea, an optimal portfolio selection model was designed and implemented in the present study. This optimal portfolio was optimized using a Markov approach and according to historical data of ۱۰ indices on the Tehran Stock Exchange from ۲۰۰۹ to ۲۰۲۲ in a six-member state. The optimal portfolio performance evaluation using the Sharpe ratio and value at risk criteria indicated that the research model had a higher performance than the mean-variance and weight parity models.
Keywords:
Markov property , K-L divergence (Kullback–Leibler divergence) criterion , Return distribution , Goodness of fit (GoF) test
Authors
Ali Nabiyan
Department of Management, Dehaghan Branch, Islamic Azad University, Dehaghan, Iran
Forozan Baktash
Department of Economics, Dehagاan Branch, Islamic Azad University, Dehaghan, Iran
Sayyed Mohammad Reza Davoodi
Department of Management, Dehaghan Branch, Islamic Azad University, Dehaghan, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :