سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

On graphs with anti-reciprocal eigenvalue property

Publish Year: 1403
Type: Journal paper
Language: English
View: 110

This Paper With 14 Page And PDF Format Ready To Download

Export:

Link to this Paper:

Document National Code:

JR_COMB-13-1_002

Index date: 6 April 2024

On graphs with anti-reciprocal eigenvalue property abstract

Let \mathtt{A}(\mathtt{G}) be the adjacency matrix of a simple connected undirected graph \mathtt{G}. A graph \mathtt{G} of order n is said to be non-singular (respectively singular) if \mathtt{A}(\mathtt{G}) is non-singular (respectively singular). The spectrum of a graph \mathtt{G} is the set of all its eigenvalues denoted by spec(\mathtt{G}). The anti-reciprocal (respectively reciprocal) eigenvalue property for a graph \mathtt{G} can be defined as `` Let \mathtt{G} be a non-singular graph \mathtt{G} if the negative reciprocal (respectively positive reciprocal) of each eigenvalue is likewise an eigenvalue of \mathtt{G}, then \mathtt{G} has anti-reciprocal (respectively reciprocal) eigenvalue property ." Furthermore, a graph \mathtt{G} is said to have strong anti-reciprocal eigenvalue property (resp. strong reciprocal eigenvalue property) if the eigenvalues and their negative (resp. positive) reciprocals are of same multiplicities. In this article, graphs satisfying anti-reciprocal eigenvalue (or property (-\mathtt{R})) and strong anti-reciprocal eigenvalue property (or property (-\mathtt{SR})) are discussed.

On graphs with anti-reciprocal eigenvalue property Keywords:

Anti-reciprocal eigenvalue property , strong anti-reciprocal eigenvalue property , Adjacency Matrix , graph spectrum

On graphs with anti-reciprocal eigenvalue property authors

Sadia Akhter

Department of Mathematics, University of the Punjab, P.O.Box ۵۴۵۹۰, Lahore, Pakistan

Uzma Ahmad

Department of Mathematics, University of the Punjab, P.O.Box ۵۴۵۹۰, Lahore, Pakistan

Saira Hameed

Department of Mathematics, University of the Punjab, P.O.Box ۵۴۵۹۰, Lahore, Pakistan

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
۱] U. Ahmad, S. Hameed and S. Jabeen, Class of ...
U. Ahmad, S. Hameed and S. Jabeen, Noncorona graphs with ...
A. Alhevaz, M. Baghipur and S. Paul, Spectrum of graphs ...
S. Barik, S. Ghosh and D. Mondal, On graphs with ...
S. Barik, M. Nath, S. Pati and B. Sarma, Unicyclic ...
S. Barik, M. Neumann and S. Pati, On nonsingular trees ...
S. Barik and S. Pati, Classes of nonbipartite graphs with ...
S. Barik, S. Pati and BK. Sarma, The spectrum of ...
D. M. Cvetković, I. Gutman and S. K. Simić, On ...
Beogr., Ser. Mat. Fiz., ۶۰۲/۶۳۳ (۱۹۷۸) ۱۱۱–۱۱۷ ...
R. Frucht and F. Harary, On the corona of two ...
C. D. Godsil and B. D. Mckay, A new graph ...
S. Hameed and U. Ahmad, Inverse of the adjacency matrices ...
J. D. Lagrange, Boolean rings and reciprocal eigenvalue properties, Linear ...
S. Panda and S. Pati, Graphs with reciprocal eigenvalue properties, ...
R. Pavithra and R. Rajkumar, Spectra of M -bicone product ...
S. Paul, Distance Laplacian spectra of joined union of graphs, ...
S. K. Vaidya and K. M. Popat, Energy of m-splitting ...
نمایش کامل مراجع