Total Roman domination and 2-independence in trees
Publish place: Transactions on Combinatorics، Vol: 13، Issue: 3
Publish Year: 1403
Type: Journal paper
Language: English
View: 118
This Paper With 11 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
Export:
Document National Code:
JR_COMB-13-3_002
Index date: 6 April 2024
Total Roman domination and 2-independence in trees abstract
Let G=(V, E) be a simple graph with vertex set V and edge set E. A {\em total Roman dominating function} on a graph G is a function f:V\rightarrow \{0,1,2\} satisfying the following conditions: (i) every vertex u {\color{blue}such that} f(u)=0 is adjacent to at least one vertex v {\color{blue}such that} f(v)=2 and (ii) the subgraph of G induced by the set of all vertices of positive weight has no isolated vertex. The weight of a total Roman dominating function f is the value, f(V)=\Sigma_{u\in V(G)}f(u). The {\em total Roman domination number} \gamma_{tR}(G) of G is the minimum weight of a total Roman dominating function of G. A subset S of V is a 2-independent set of G if every vertex of S has at most one neighbor in S. The maximum cardinality of a 2-independent set of G is the 2-independence number \beta_2(G). These two parameters are incomparable in general, however, we show that if T is a tree, then \gamma_{tR}(T)\le \frac{3}{2}\beta_2(T) and we characterize all trees attaining the equality.
Total Roman domination and 2-independence in trees Keywords:
total Roman dominating function , total Roman domination number , 2-independent set , 2-independence number
Total Roman domination and 2-independence in trees authors
Hossein Abdollahzadeh Ahangar
Department of Mathematics Babol Noshirvani University of Technology Shariati Ave., Babol, Iran
Marzieh Soroudi
Department of Mathematics Azarbaijan Shahid Madani University Tabriz, Iran
Jafar Amjadi
Department of Mathematics Azarbaijan Shahid Madani University Tabriz, Iran
Seyed Mahmoud Sheikholeslami
Department of Mathematics Azarbaijan Shahid Madani University Tabriz, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :