Summarization Algorithm for Data Stream to Speed up Outlier Data Detection
Publish place: Journal of Computing and Security، Vol: 10، Issue: 1
Publish Year: 1402
Type: Journal paper
Language: English
View: 109
This Paper With 12 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
این Paper در بخشهای موضوعی زیر دسته بندی شده است:
Export:
Document National Code:
JR_JCSE-10-1_003
Index date: 6 April 2024
Summarization Algorithm for Data Stream to Speed up Outlier Data Detection abstract
Outlier detection in data streams is an essential issue in data processing. Today, due to the massive growth of streaming data generated by the spread of the Internet of Things, outlier detection has become a significant challenge. Much progress has been made in outlier detection based on local outlier detection algorithms, such as density-based local outlier factor algorithms, suitable for static data. The incremental version of these algorithms is used to detect the local outliers in streaming data. However, outlier detection in streaming data faces the challenges of limited memory capacity, high execution time, inaccessibility of all data at one time, and changes in data distribution (increasing and decreasing input rates, uncertainty, etc.). In this paper, we propose a density-based summarization algorithm, which summarizes data, every time the buffer is filled. The proposed algorithm maintains the desired shape of the clusters, with a low computational cost. To this end, larger clusters are selected and the data of their dense areas are reduced so that the shape of the old clusters is not lost. The proposed summarization algorithm reduces execution time and increases precision, recall, and F1 score compared with the evaluated algorithms.
Summarization Algorithm for Data Stream to Speed up Outlier Data Detection Keywords:
Summarization Algorithm for Data Stream to Speed up Outlier Data Detection authors
Hadid Mollashahi
Faculty of Electrical & Computer Engineering, University of Birjand, Birjand, Iran.
Hamid Saadatfar
Faculty of Electrical & Computer Engineering, University of Birjand, Birjand, Iran.
Hamed Vahdatnejad
Faculty of Electrical & Computer Engineering, University of Birjand, Birjand, Iran.
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :