Gow-Tamburini type generation of the special linear group for some special rings.
Publish place: International Journal of Group Theory، Vol: 13، Issue: 2
Publish Year: 1403
Type: Journal paper
Language: English
View: 78
This Paper With 10 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
Export:
Document National Code:
JR_THEGR-13-2_001
Index date: 6 April 2024
Gow-Tamburini type generation of the special linear group for some special rings. abstract
Let R be a commutative ring with unity and let n\geq 3 be an integer. Let SL_n(R) and E_n(R) denote respectively the special linear group and elementary subgroup of the general linear group GL_n(R). A result of Hurwitz says that the special linear group of size atleast three over the ring of integers of an algebraic number field is finitely generated. A celebrated theorem in group theory states that finite simple groups are two-generated. Since the special linear group of size atleast three over the ring of integers is not a finite simple group, we expect that it has more than two generators. In the special case, where R is the ring of integers of an algebraic number field which is not totally imaginary, we provide for E_n(R) (and hence SL_n(R)) a set of Gow-Tamburini matrix generators, depending on the minimal number of generators of R as a Z-module.
Gow-Tamburini type generation of the special linear group for some special rings. Keywords:
Quadratic extensions , ring of integers of number fields , special linear group , Elementary subgroup
Gow-Tamburini type generation of the special linear group for some special rings. authors
Naresh Afre
Department of Mathematics, University of Mumbai, Mumbai, India
Anuradha Garge
Department of Mathematics, University Mumbai, Kalina Campus, Mumbai, India
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :