Study of the Self-starting Performance of a Vertical-axis Wind Turbine

Publish Year: 1403
نوع سند: مقاله ژورنالی
زبان: English
View: 25

This Paper With 16 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_JAFM-17-6_010

تاریخ نمایه سازی: 20 فروردین 1403

Abstract:

The self-starting performance of vertical-axis wind turbines (VAWTs) is crucial for their widespread utilization. Conventional evaluation methods using the static torque coefficient (CTS) or self-starting time have limitations. "The minimum ۱st derivative of angular acceleration in the lift acceleration state" is proposed to serve as a suitable indicator for the completion of self-starting. Understanding the behavior of the self-starting process in VAWTs is crucial for optimizing power output. A comprehensive methodology is used that integrates experiments and computational fluid dynamics (CFD). Wind tunnel experiments are conducted to evaluate the self-starting and power output performance of the turbines. CFD is employed utilizing the Fluent ۶DOF module to investigate the torque and flow field characteristics during the self-starting process. Additionally, the objectives of our study are to investigate the effect of static evaluation methods on the dynamic start-up process and to explore the effects of airfoil type, pitch angle, and inlet wind speed on the self-starting behavior of turbines. The results indicate that a high CTS ensures initial rotation, but the subsequent self-starting time remains independent of this factor. Increasing the pitch angle enhances the self-starting performance. At an inlet speed of ۵ m/s, for the NACA۲۴۱۸ airfoil turbine, the self-starting times for pitch angles of ۱۰° and ۵° are reduced by ۲۰% and ۱۲%, respectively, compared to that for ۰°. The NACA۰۰۱۸ airfoil turbines with pitch angles of ۰° and ۵° fail to complete self-starting. The airfoil type also plays a crucial role, with the NACA۲۴۱۸ airfoil demonstrating superior self-starting performance and power performance. Furthermore, the minimum self-starting wind speed of the NACA۰۰۱۸ airfoil turbine was explored and determined be between ۵.۵ m/s and ۶ m/s. The utilization of this novel self-starting evaluation method addresses the limitations of traditional approaches, providing a more universally applicable interpretation of the characteristics of turbine self-starting behavior.

Authors

Z. Xu

College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang Province, ۳۱۰۰۱۴, PR China

X. Dong

College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang Province, ۳۱۰۰۱۴, PR China

K. Li

College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang Province, ۳۱۰۰۱۴, PR China

Q. Zhou

College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang Province, ۳۱۰۰۱۴, PR China

Y. Zhao

College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang Province, ۳۱۰۰۱۴, PR China

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • Al-Obaidi, A. (۲۰۱۸). Experimental and numerical investigations on the cavitation ...
  • Al-Obaidi, A., Khalaf, H., & Alhamid, J. (۲۰۲۳a). Investigation of ...
  • Al-Obaidi, A., Khalaf, H., & Alhamid, J. (۲۰۲۳b). Investigation on ...
  • Al-Obaidi, A. R. (۲۰۱۹). Investigation of effect of pump rotational ...
  • Al-Obaidi, A. R. (۲۰۲۳a). Effect of different guide vane configurations ...
  • Al-Obaidi, A. R. (۲۰۲۳b). Experimental diagnostic of cavitation flow in ...
  • Al-Obaidi, A. R., & Alhamid, J. (۲۰۲۳). Investigation of the ...
  • Al-Obaidi, A. R., & Qubian, A. (۲۰۲۲). Effect of outlet ...
  • Alam, F., & Golde, S. (۲۰۱۳). An aerodynamic study of ...
  • Almohammadi, K. M., Ingham, D. B., Ma, L., & Pourkashan, ...
  • Ansys, I. (۲۰۱۸). ANSYS fluent user’s guide, release ۱۹.۰. ANSYS ...
  • Arab, A., Javadi, M., Anbarsooz, M., & Moghiman, M. (۲۰۱۷). ...
  • Arpino, F., Scungio, M., & Cortellessa, G. (۲۰۱۸). Numerical performance ...
  • Asr, M. T., Nezhad, E. Z., Mustapha, F., & Wiriadidjaja, ...
  • Baker, J. (۱۹۸۳). Features to aid or enable self starting ...
  • Balduzzi, F., Bianchini, A., Maleci, R., Ferrara, G., & Ferrari, ...
  • Bangga, G., Hutani, S., & Heramarwan, H. (۲۰۲۱). The effects ...
  • Battisti, L., Benini, E., Brighenti, A., Dell'Anna, S., & Castelli, ...
  • Bhuyan, S., & Biswas, A. (۲۰۱۴). Investigations on self-starting and ...
  • Celik, Y., Ingham, D., Ma, L., & Pourkashanian, M. (۲۰۲۲). ...
  • Celik, Y., Ma, L., Ingham, D., & Pourkashanian, M. (۲۰۲۰). ...
  • Chang, T. L., Tsai, S. F., & Chen, C. L. ...
  • Ebert, P. R., & Wood, D. H. (۱۹۹۷). Observations of ...
  • GWEC, G. W. E. C. (۲۰۲۳). Global Wind Report ۲۰۲۳. ...
  • Hand, B., & Cashman, A. (۲۰۲۰). A review on the ...
  • Hashem, I., & Mohamed, M. H. (۲۰۱۸). Aerodynamic performance enhancements ...
  • Hill, N., Dominy, R., Ingram, G., & Dominy, J. (۲۰۰۸). ...
  • Howell, R., Qin, N., Edwards, J., & Durrani, N. (۲۰۱۰). ...
  • Islam, M. R., Mekhilef, S., & Saidur, R. (۲۰۱۳). Progress ...
  • Kaya, M. N., Kose, F., Ingham, D., Ma, L., & ...
  • Kumar, R., Raahemifar, K., & Fung, A. S. (۲۰۱۸). A ...
  • Li, Q. A., Maeda, T., Kamada, Y., Murata, J., Shimizu, ...
  • Li, Q. A., Maeda, T., Kamada, Y., Shimizu, K., Ogasawara, ...
  • Li, Y., Zhao, S. Y., Qu, C. M., Feng, F., ...
  • Li, Y., Zhao, S. Y., Qu, C. M., Tong, G. ...
  • Liu, J., Lin, H., & Zhang, J. (۲۰۱۹). Review on ...
  • Lunt, P. (۲۰۰۵). An aerodynamic model for a vertical-axis wind ...
  • Maalouly, M., Souaiby, M., ElCheikh, A., Issa, J. S., & ...
  • Mohamed, M. H., Dessoky, A., & Alqurashi, F. (۲۰۱۹). Blade ...
  • Mohamed, O. S., Ibrahim, A. A., Etman, A. K., Abdelfatah, ...
  • Nobile, R., Vandati, M., Barlow, J. F., & Mewburn-Crook, A. ...
  • Rezaeiha, A., Montazeri, H., & Blocken, B. (۲۰۱۸a). Characterization of ...
  • Rezaeiha, A., Montazeri, H., & Blocken, B. (۲۰۱۸b). Towards accurate ...
  • Roy, S., & Saha, U. K. (۲۰۱۴). An adapted blockage ...
  • Sheldahl, R. E., Blackwell, B. F., & Feltz, L. V. ...
  • Singh, M. A., Biswas, A., & Misra, R. D. (۲۰۱۵). ...
  • Sobhani, E., Ghaffari, M., & Maghrebi, M. J. (۲۰۱۷). Numerical ...
  • Su, H., Dou, B. Z., Qu, T. M., Zeng, P., ...
  • Su, J., Lei, H., Zhou, D., Han, Z. L., Bao, ...
  • Sun, X. J., Zhu, J. Y., Hanif, A., Li, Z. ...
  • Tong, W. (۲۰۱۰). Wind power generation and wind turbine design. ...
  • Twidell, J. (۲۰۲۱). Renewable energy resources. Routledge ...
  • Wong, K. H., Chong, W. T., Sukiman, N. L., Shiah, ...
  • Worasinchai, S., Ingram, G. L., & Dominy, R. G. (۲۰۱۲). ...
  • Worasinchai, S., Ingram, G. L., & Dominy, R. G. (۲۰۱۶). ...
  • Zhu, H. T., Hao, W. X., Li, C., Luo, S., ...
  • Zhu, J. Y., Huang, H. L., & Shen, H. (۲۰۱۵). ...
  • نمایش کامل مراجع