سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

Comparative Study of Machine Learning Algorithms in Classifying HRV for the Driver’s Physiological Condition

Publish Year: 1402
Type: Journal paper
Language: English
View: 117

This Paper With 14 Page And PDF Format Ready To Download

این Paper در بخشهای موضوعی زیر دسته بندی شده است:

Export:

Link to this Paper:

Document National Code:

JR_CEJ-9-9_013

Index date: 21 April 2024

Comparative Study of Machine Learning Algorithms in Classifying HRV for the Driver’s Physiological Condition abstract

Heart Rate Variability (HRV) may be used as a psychological marker to assess drivers’ states from physiological signals such as an electrocardiogram (ECG), electroencephalogram (EEG), and photoplethysmography (PPG). This paper reviews HRV acquisition methods from drivers and machine learning approaches for driver cardiac health based on HRV classification. The study examines four publicly available ECG datasets and analyzes their HRV features, including time domain, frequency domain, short-term measures, and a combination of time and frequency domains. Eight machine learning classifiers, namely K-Nearest Neighbor, Decision Tree, Naive Bayes, Linear Discriminant Analysis, Support Vector Machine, Random Forest, Gradient Boost, and Adaboost, were used to determine whether the driver's state is normal or abnormal. The results show that K-Nearest Neighbor and Decision Tree classifiers had the highest accuracy at 92.86%. The study concludes by assessing the performance of machine learning algorithms in classifying HRV for the driver's physiological condition using the Man-Whitney U test in terms of accuracy and F1 score. We have statistical evidence to support that the prediction quality is different when HRV analysis applies these three sets: (i) time domain measures or frequency domain measures; (ii) frequency domain measures or short-term measures; and (iii) combining time and frequency domains or only frequency domains. Doi: 10.28991/CEJ-2023-09-09-013 Full Text: PDF

Comparative Study of Machine Learning Algorithms in Classifying HRV for the Driver’s Physiological Condition Keywords:

Comparative Study of Machine Learning Algorithms in Classifying HRV for the Driver’s Physiological Condition authors

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
Aimie-Salleh, N., Aliaa Abdul Ghani, N., Hasanudin, N., & Nur ...
Arakawa, T. (2021). A review of heartbeat detection systems for ...
Bhardwaj, R., & Balasubramanian, V. (2019). Viability of Cardiac Parameters ...
Malik, M., Bigger, J. T., Camm, A. J., Kleiger, R. ...
Castaldo, R., Montesinos, L., Melillo, P., James, C., & Pecchia, ...
de Oliveira Júnior, F. A., Pereira, R. A., Silva, A. ...
Geronikolou, S. A., Chrousos, G. P., & Cokkinos, D. V. ...
Aswathi, C. D., Mathew, N. A., Riyas, K. S., & ...
Benchekroun, M., Chevallier, B., Istrate, D., Zalc, V., & Lenne, ...
Bhor, P., Sodhi, G. S., & Sing, D. (2019). Classification ...
Bousseljot, R.-D. (1995). Use of the PTB’s CARDIODAT ECG signal ...
Goldberger, A. L., Amaral, L. A., Glass, L., Hausdorff, J. ...
Hantono, B. S., Nugroho, L. E., & Santosa, P. I. ...
Hasan, M. M., Watling, C. N., & Larue, G. S. ...
Healey, J. A., & Picard, R. W. (2005). Detecting stress ...
Hejjel, L. (2004). Suppression of power-line interference by analog notch ...
Huang, J., Liu, Y., & Peng, X. (2022). Recognition of ...
Persson, A., Jonasson, H., Fredriksson, I., Wiklund, U., & Ahlstrom, ...
Ishaque, S., Khan, N., & Krishnan, S. (2021). Trends in ...
Iwamoto, H., Hori, K., Fujiwara, K., & Kano, M. (2021). ...
Kakaria, S., Bigné, E., Catrambone, V., & Valenza, G. (2022). ...
Iqbal, T., Elahi, A., Wijns, W., & Shahzad, A. (2022). ...
Koay, H. V., Chuah, J. H., Chow, C. O., & ...
Liu, S., Koch, K., Zhou, Z., Maritsch, M., He, X., ...
Lopez-Martinez, D., El-Haouij, N., & Picard, R. (2019). Detection of ...
Manstetten, D., Beruscha, F., Bieg, H. J., Kobiela, F., Korthauer, ...
Massoz, Q., Langohr, T., Francois, C., & Verly, J. G. ...
Munla, N., Khalil, M., Shahin, A., & Mourad, A. (2015). ...
Murugan, S., Selvaraj, J., & Sahayadhas, A. (2020). Detection and ...
Nguyen, T. T., Aoki, H., Le, A. S., Akio, H., ...
Nunan, D., Sandercock, G. R. H., & Brodie, D. A. ...
Oskooei, A., Chau, S. M., Weiss, J., Sridhar, A., Martínez, ...
Kim, J. K., & Ahn, J. M. (2019). Digital IIR ...
Rastgoo, M. N., Nakisa, B., Maire, F., Rakotonirainy, A., & ...
Riganello, F., Larroque, S. K., Bahri, M. A., Heine, L., ...
Riposan-Taylor, A., & Taylor, I. J. (2018). Personal Connected Devices ...
Schneegass, S., Pfleging, B., Broy, N., Heinrich, F., & Schmidt, ...
Nunes, C., Beatriz-Afonso, A., Cruz-Jesus, F., Oliveira, T., & Castelli, ...
Taylor, P., Griffiths, N., Bhalerao, A., Xu, Z., Gelencser, A., ...
van Gent, P., Farah, H., van Nes, N., & van ...
Vicente, J., Laguna, P., Bartra, A., & Bailón, R. (2016). ...
Wagner, P., Strodthoff, N., Bousseljot, R. D., Kreiseler, D., Lunze, ...
Wang, K., & Guo, P. (2021). An Ensemble Classification Model ...
Zontone, P., Affanni, A., Bernardini, R., Brisinda, D., Del Linz, ...
نمایش کامل مراجع