Prediction of Energy Consumption of an Administrative Building using Machine Learning and Statistical Methods
Publish place: Civil Engineering Journal، Vol: 9، Issue: 5
Publish Year: 1402
Type: Journal paper
Language: English
View: 109
This Paper With 16 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
این Paper در بخشهای موضوعی زیر دسته بندی شده است:
Export:
Document National Code:
JR_CEJ-9-5_001
Index date: 21 April 2024
Prediction of Energy Consumption of an Administrative Building using Machine Learning and Statistical Methods abstract
Energy management is now essential in light of the current energy issues, particularly in the building industry, which accounts for a sizable amount of global energy use. Predicting energy consumption is of great interest in developing an effective energy management strategy. This study aims to prove the outperformance of machine learning models over SARIMA models in predicting heating energy usage in an administrative building in Chefchaouen City, Morocco. It also highlights the effectiveness of SARIMA models in predicting energy with limited data size in the training phase. The prediction is carried out using machine learning (artificial neural networks, bagging trees, boosting trees, and support vector machines) and statistical methods (14 SARIMA models). To build the models, external temperature, internal temperature, solar radiation, and the factor of time are selected as model inputs. Building energy simulation is conducted in the TRNSYS environment to generate a database for the training and validation of the models. The models' performances are compared based on three statistical indicators: normalized root mean square error (nRMSE), mean average error (MAE), and correlation coefficient (R). The results show that all studied models have good accuracy, with a correlation coefficient of 0.90 < R < 0.97. The artificial neural network outperforms all other models (R=0.97, nRMSE=12.60%, MAE= 0.19 kWh). Although machine learning methods, in general terms, seemingly outperform statistical methods, it is worth noting that SARIMA models reached good prediction accuracy without requiring too much data in the training phase. Doi: 10.28991/CEJ-2023-09-05-01 Full Text: PDF
Prediction of Energy Consumption of an Administrative Building using Machine Learning and Statistical Methods Keywords:
Prediction of Energy Consumption of an Administrative Building using Machine Learning and Statistical Methods authors
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :