Enhanced LVRT and HVRT Capability of Grid Tied PMSG Based Wind Energy System Using Active Disturbance Rejection Controller

Publish Year: 1403
نوع سند: مقاله ژورنالی
زبان: English
View: 14

This Paper With 17 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_JREE-11-2_004

تاریخ نمایه سازی: 9 اردیبهشت 1403

Abstract:

The widespread integration of wind energy poses numerous challenges, including ride-through capability issues, stability concerns, and power quality issues within the utility grid. Additionally, the inherent non-linear nature of wind energy systems, coupled with internal dynamics like model uncertainties, non-linearities, parametric variations, modeling errors, and external disturbances, significantly impacts system performance. Therefore, developing a robust controller becomes imperative to address the complexity, non-linearity, coupling, time variation, and uncertainties associated with wind energy systems, aiming to enhance transient performance in the presence of external and internal disturbances. The research presented in this manuscript focuses on devising a robust control scheme for a grid-tied Permanent Magnet Synchronous Generator (PMSG) wind turbine. The objective is to improve the wind turbine's performance under both normal and abnormal grid conditions. The innovation in Active Disturbance Rejection Control (ADRC) lies in its capacity to offer robust, adaptive, and disturbance-rejecting capabilities without relying on precise mathematical models. This quality makes ADRC a valuable and innovative tool for addressing challenges in complex and dynamic real-world applications where system parameters evolve over time. The wind energy system is inherently non-linear, time-varying, cross-coupled, and highly uncertain. It is also susceptible to parameter uncertainties, parametric variations, and external grid disturbances, all of which significantly influence its performance. The effectiveness of the proposed control scheme is validated to enhance ride-through capability and extract maximum power under internal disturbances, external grid disturbances, and parametric variations. To assess the proposed controller's efficacy, a comparative analysis is conducted using the Integral Time Absolute Error (ITAE) index for all abnormal grid disturbances. This analysis is performed in comparison to a Proportional Resonant Controller and a PI controller, providing evidence of the proposed controller's effectiveness. In summary, the incorporation of an Active Disturbance Rejection Controller emerges as a promising solution for enhancing the Low Voltage Ride-Through (LVRT) and High Voltage Ride-Through (HVRT) capabilities of grid-tied Permanent Magnet Synchronous Generator (PMSG)-based wind energy systems.

Keywords:

Active Disturbance Rejection Controller , Proportional resonant controller , Harmonic Compensator , Fault ride through capability , Proportional Integral controller , Permanent Magnet Synchronous Generator

Authors

Sagiraju Dileep Varma

Department of Electrical & Electronics Engineering, Shri Vishnu Engineering College for Women Bhimavaram (Autonomous), Andhra Pradesh, India.

Sarathbabu Duvvuri

Department of Electrical & Electronics Engineering, Shri Vishnu Engineering College for Women Bhimavaram (Autonomous), Andhra Pradesh, India.

Omkar Koduri

Department of Electrical & Electronics Engineering, Shri Vishnu Engineering College for Women Bhimavaram (Autonomous), Andhra Pradesh, India.

Srikanth Malladi

Department of Electrical & Electronics Engineering, Shri Vishnu Engineering College for Women Bhimavaram (Autonomous), Andhra Pradesh, India.

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • Abbey, C., & Joos, G. (۲۰۰۷). Supercapacitor Energy Storage for ...
  • Alam, S., & Abido, M. (۲۰۱۸). Fault Ride Through Capability ...
  • Alepuz, S., Calle, A., Busquets-Monge, S., Kouro, S., & Wu, ...
  • Ayadi, M., & Derbel, N. (۲۰۱۷). Nonlinear adaptive backstepping control ...
  • Belachew Desalegn, Desta Gebeyehu, Bimrew Tamrat (۲۰۲۳). Smoothing electric power ...
  • Bolund, B., Bernhoff, H., & Leijon, M. (۲۰۰۷). Flywheel energy ...
  • Causebrook, A., Atkinson, D. J., & Jack, A. G. (۲۰۰۷). ...
  • Cheikh, R., Menacer, A., Chrifi-Alaoui, L., & Bensmail, C. (۲۰۲۰). ...
  • Chen, X., Yan, L., Zhou, X., & Sun, H. (۲۰۱۸). ...
  • Díaz-González, F., Sumper, A., Gomis-Bellmunt, O., & Bianchi, F. D. ...
  • Control of Pitch Angle in Wind Turbine Based on Doubly Fed Induction Generator Using Fuzzy Logic Method [مقاله ژورنالی]
  • Elmouhi, Noureddine & Essadki, Ahmed & Elaimani, Hind. (۲۰۲۳). Fault ...
  • Firouzi, M. (۲۰۱۸). A modified capacitive bridge‐type fault current limiter ...
  • Golshannavaz, S., Aminifar, F., & Nazarpour, D. (۲۰۱۴). Application of ...
  • Guoyi, X., Lie, X., & Morrow, J. (۲۰۱۳). Power oscillation ...
  • Control of Pitch Angle in Wind Turbine Based on Doubly Fed Induction Generator Using Fuzzy Logic Method [مقاله ژورنالی]
  • Huang, C., Xiao, X. Y., Zheng, Z., & Wang, Y. ...
  • Inoue, Y., Morimoto, S., & Sanada, M. (۲۰۰۸). Output maximization ...
  • Ji, T., He, X., Li, X., Liu, K., & Zhang, ...
  • Kim, K., Jeung, Y., Lee, D., & Kim, H. (۲۰۱۲). ...
  • Kwon, J. M., Kim, J. H., Kwak, S. H., & ...
  • Laghridat, H., Essadki, A., & Nasser, T. (۲۰۲۲). Coordinated control ...
  • Liu, M. et al. (۲۰۲۳). ADRC-based optimized control system for ...
  • Lu, M. S., Chang, C. L., Lee, W. J., & ...
  • Merabet, A., Ahmed, K. T., Ibrahim, H., & Beguenane, R. ...
  • Mohod, S. W., & Aware, M. V. (۲۰۱۰). A STATCOM-Control ...
  • Muyeen, S. M., & Al-Durra, A. (۲۰۱۳). Modeling and Control ...
  • Nguyen, T. H., & Lee, D. (۲۰۱۳). Advanced Fault Ride-Through ...
  • Nguyen, T. H., & Lee, D. C. (۲۰۱۰). Ride-through technique ...
  • Pannell, G., Zahawi, B., Atkinson, D. J., & Missailidis, P. ...
  • Penne, M., Qiao, W., Qu, L., Huang, R., & Huang, ...
  • Rahim, A. H. M. A., & Nowicki, E. P. (۲۰۱۲). ...
  • Ramirez, D., Martinez, S., Platero, C. A., Blazquez, F., & ...
  • Raphael, S., & Massoud, A. (۲۰۱۱). Unified power flow controller ...
  • Shi, J., Tang, Y., Xia, Y., Ren, L., & Li, ...
  • Soliman, M. A., Hasanien, H. M., Azazi, H. Z., El-Kholy, ...
  • Thet, A. K., & Saitoh, H. (۲۰۰۹). Pitch control for ...
  • Valenciaga, F., & Puleston, P. F. (۲۰۰۸). High-Order Sliding Control ...
  • Yaramasu, V., Wu, B., Alepuz, S., & Kouro, S. (۲۰۱۴). ...
  • Yehia, D. M., Mansour, D. A., & Yuan, W. (۲۰۱۸). ...
  • Wang, L., & Truong, D. N. (۲۰۱۲). Dynamic Stability Improvement ...
  • Wang, Z., Fan, J., Meng, Y., Sun, Z., Zhou, Z., ...
  • نمایش کامل مراجع