سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

Adsorption of Transition Metal Cations (Cr2+, Mn2+, Fe2+, Cu+, Ag+ and Au+) on Boron Nitride Nanotube: Structural Analysis and Electronic Properties

Publish Year: 1403
Type: Journal paper
Language: English
View: 59

This Paper With 19 Page And PDF Format Ready To Download

Export:

Link to this Paper:

Document National Code:

JR_AJCS-7-4_001

Index date: 18 May 2024

Adsorption of Transition Metal Cations (Cr2+, Mn2+, Fe2+, Cu+, Ag+ and Au+) on Boron Nitride Nanotube: Structural Analysis and Electronic Properties abstract

This work uses the density functional theory (DFT) method to investigate the adsorption of transition metal cations (Cr2+, Mn2+, Fe2+, Cu+, Ag+, and Au+) on a single-walled boron nitride nanotube (SWBNNT). The systems with the highest adsorption energy within each ion group are the Fe2+@BNNT and Au+@BNNT, with observed values of -1474.30 and -242.15 kJ.mol-1, respectively. However, the Mn2+@BNNT and Ag+@BNNT structures exhibit the lowest values, measuring at -816.51 and -173.25 kJ.mol-1, respectively. The density of states computation is illustrated to validate the outcomes attained. The results from our analysis of electronic characteristics indicate that the percentage change in energy gap (%ΔE) is higher in the divalent complexes compared to the monovalent structures. The Fe2+@BNNT complex exhibits the smallest HOMO–LUMO energy gap, measuring 5.760 eV. This is followed by Cr2+@BNNT and Mn2+@BNNT, with energy gaps of 5.659 eV and 5.755 eV, respectively. However, the corresponding values for Au+@BNNT, Cu+@BNNT, and Ag+@BNNT are 6.046, 6.821, and 6.471 eV, respectively. Therefore, the divalent ions have the potential to be excellent candidates for enhanced adsorption capability.

Adsorption of Transition Metal Cations (Cr2+, Mn2+, Fe2+, Cu+, Ag+ and Au+) on Boron Nitride Nanotube: Structural Analysis and Electronic Properties Keywords:

Adsorption of Transition Metal Cations (Cr2+, Mn2+, Fe2+, Cu+, Ag+ and Au+) on Boron Nitride Nanotube: Structural Analysis and Electronic Properties authors

Marziyeh Mohammadi

Department of Chemistry, Faculty of Science, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran

Fahimeh Alirezapour

Department of Chemistry, Payame Noor University (PNU), P.O.Box ۱۹۳۹۵-۴۶۹۷, Tehran, Iran

Azadeh Khanmohammadi

Department of Chemistry, Payame Noor University (PNU), P.O.Box ۱۹۳۹۵-۴۶۹۷, Tehran, Iran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
C. Li, E.T. Thostenson, T.-W. Chou, Sensors and actuators based ...
E.C. Anota, M.S. Villanueva, D.G. Toral, L.T. Carrillo, M.d.R.M. Martínez, ...
M.T. Baei, A.R. Soltani, A.V. Moradi, E.T. Lemeski, Adsorption properties ...
A. Soltani, M.R. Taghartapeh, H. Mighani, A.A. Pahlevani, R. Mashkoor, ...
K. Larsson, CVD growth of cubic boron nitride: A theoretical/experimental ...
Y. Shimizu, Y. Moriyoshi, S. Komatsu, T. Ikegami, T. Ishigaki, ...
H. Xiang, J. Yang, J. Hou, Q. Zhu, First-principles study ...
R.J. Baierle, T. Schmidt, A. Fazzio, Adsorption of CO and ...
Y. Li, H. Li, Structures and electronic, optical properties of ...
Y.G. Park, S.N. Nam, M. Jang, C.M. Park, N. Her, ...
D. Doğan, F.R. Karaduman, N. Horzum, A.Ü. Metin, Boron nitride ...
M.L. Schilsky, Wilson disease: genetic basis of copper toxicity and ...
Y.K. Recepoglu, A.Y. Goren, V. Vatanpour, Y. Yoon, A. Khataee, ...
R. Huang, J. Lv, J. Chen, Y. Zhu, J. Zhu, ...
D. Fam, A. Palaniappan, A. Tok, B. Liedberg, S. Moochhala, ...
H.J. Yoon, J.H. Yang, Z. Zhou, S.S. Yang, M.M.C. Cheng, ...
A. Soltani, N. Ahmadian, Y. Kanani, A. Dehnokhalaji, H. Mighani, ...
A. Soltani, N. Ahmadian, A. Amirazami, A. Masoodi, E.T. Lemeski, ...
M.B. Panchal, S.H. Upadhyay, Cantilevered single walled boron nitride nanotube ...
Z. Zhang, W. Guo, Y. Dai, Stability and electronic properties ...
A. Bahari, M. Bagheri, M. Amiri, First principles study of ...
S.P. Ju, Y.C. Wang, T.W. Lien, Tuning the electronic properties ...
R. Chowdhury, C. Wang, S. Adhikari, F. Scarpa, Vibration and ...
J. Beheshtian, M.T. Baei, A.A. Peyghan, Theoretical study of CO ...
M. Solimannejad, M. Noormohammadbeigi, Boron nitride nanotube (BNNT) as a ...
C.N. Lima, H. Frota, P. Chaudhuri, A. Ghosh, Density functional ...
J.M.H. Kroes, F. Pietrucci, A. Curioni, W. Andreoni, Characterizing and ...
S. Zhang, L. Kang, X. Wang, L. Tong, L. Yang, ...
A. Hassanpour, M.R. Poor Heravi, A. Khanmohammadi, Electronic sensors for ...
D. Janas, K.K. Koziol, The effect of the gaseous environment ...
M.W. Schmidt, K.K. Baldridge, J.A. Boatz, S.T. Elbert, M.S. Gordon, ...
J.D. Chai, M. Head-Gordon, Long-range corrected hybrid density functionals with ...
R. Ghiasi, R. Tale, V. Daneshdoost, A.Y. Siavoshani, Nature of ...
H. Iikura, T. Tsuneda, T. Yanai, K. Hirao, A long-range ...
A. Savin, H.J. Flad, Density functionals for the Yukawa electron‐electron ...
J.D. Chai, M. Head-Gordon, Systematic optimization of long-range corrected hybrid ...
D. Andrae, U. Haeussermann, M. Dolg, H. Stoll, H. Preuss, ...
S.F. Boys, F. Bernardi, The calculation of small molecular interactions ...
T. Lu, F. Chen, Multiwfn: A multifunctional wavefunction analyzer, Journal ...
E. Glendening, A. Reed, J. Carpenter, F. Weinhold, NBO program, ...
R.G. Pearson, Chemical Hardness: Applications from Molecules to Solids, ۱۹۹۷. ...
P. Coppens, Y. Abramov, M. Carducci, B. Korjov, I. Novozhilova, ...
T. Koopmans, Über die Zuordnung von Wellenfunktionen und Eigenwerten zu ...
R.G. Pearson, Absolute electronegativity and absolute hardness of Lewis acids ...
R.G. Parr, R.G. Pearson, Absolute hardness: companion parameter to absolute ...
F. Alirezapour, A. Khanmohammadi, The effect of cation–π interactions on ...
F. Alirezapour, K. Bamdad, A. Khanmohammadi, N. Ebrahimi, A computational ...
نمایش کامل مراجع