A review of methods for estimating coefficients of objective functions and constraints in mathematical programming models

Publish Year: 1403
نوع سند: مقاله ژورنالی
زبان: English
View: 56

This Paper With 12 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_IJNAA-15-7_028

تاریخ نمایه سازی: 29 اردیبهشت 1403

Abstract:

Considering the high importance of the optimization problem, this study evaluated mathematical programming models by considering various methods of estimating model coefficients. Correct and accurate data must be entered into the model to get accurate and robust result from the model. Most input data to the presented model are technical and objective function coefficients. Therefore, it is necessary to determine the information related to these coefficients with the utmost precision and, as much as possible, to develop a suitable scientific method to estimate the value of these coefficients [۵]. Finding the best method for estimating the coefficients of mathematical programming models can significantly optimize the final values of the variables extracted from the mathematical programming model. For this reason, it is essential to study the methods used so far in this field and examine their advantages and disadvantages. This review study investigated various methods of estimating technical coefficients of mathematical planning models in the conditions of possible decision-making and uncertainty after reviewing ۱۱۷ articles published between ۱۹۵۵ and ۲۰۲۲. These methods include fuzzy methods, statistical methods, and data analysis methods. Statistical methods such as regression methods, time series methods, exponential smoothing, and linear non-linear and non-parametric, machine learning and data mining methods were investigated in this article. The methods of data-driven analysis explained in this article can be referred to as decision trees, random forests and the Lasso methods. After evaluating and comparing these methods, suggestions for choosing the best method were provided.

Authors

Ali Ramezani

Department of Industrial Management, Faculty of Management, University of Allameh Tabatabai, Tehran, Iran

Seyyed Mohammad Ali Khatami Frouzabadi

Department of Industrial Management, Faculty of Management, University of Allameh Tabatabai, Tehran, Iran

Maghsoud Amiri

Department of Industrial Management, Faculty of Management, University of Allameh Tabatabai, Tehran, Iran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • R. Alikhani, A. Azar, and A. Rashidi Kamijan, Stochastic planning ...
  • R. Alikhani and M. Sadegh Amal Nik, The fuzzy-stochastic multi-objective ...
  • M. Amiri and S.A. Ayazi, Decision Making in Conditions of ...
  • M. Amiri, A. Darestani Farahani, and M. Mehboob Ghodsi, Multi-Criteria ...
  • A. Azar, R. Farhi Bailoyi, and A. Rajabzadeh, Comparative comparison ...
  • A. Azar and M. Momeni, Statistics and its Application in ...
  • D. Bertsimas and A. Thiele, Robust and data-driven optimization: modern ...
  • M. Biggs, R. Hariss, and G. Perakis, Optimizing objective functions ...
  • G.E. Box and D.A. Pierce, Distribution of residual autocorrelations in ...
  • S.P. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, ...
  • L. Breiman, Random forests, Machine Learn. ۴۵ (۲۰۰۱), no. ۱, ...
  • F. Campanella, L. Serino, A. Crisci, and A. D’Ambra, The ...
  • S. Corsaro, V. De Simone and Z. Marino, Fused lasso ...
  • S.F. Crone, S. Lessmann and R. Stahlbock, The impact of ...
  • G.B. Dantzig, Linear programming under uncertainty, Manag. Sci. ۱ (۱۹۵۵), ...
  • J.G. De Gooijer and R.J. Hyndman, ۲۵ years of time ...
  • N. Deng, Y. Tian and C. Zhang, Support Vector Machines: ...
  • P. Diggle, K.Y. Liang and S.L. Zeger, Longitudinal Data Analysis, ...
  • C.F. Gauss, Theoria Motus Corporum Coelestum, Werke, ۱۸۰۹ ...
  • J.W. Hardin and J.M. Hilbe, Generalized Estimating Equations, CRC Press, ...
  • W. Hardle and E. Mammen, Comparing nonparametric versus parametric regression ...
  • T.K. Ho, The random subspace method for constructing decision forests, ...
  • M. Hollander, D.A. Wolfe, and E. Chicken, Nonparametric Statistical Methods, ...
  • P. Howitt and D. Mayer-Foulkes, R&D, implementation and stagnation: A ...
  • Y. Jiang, Variable selection with prior information for generalized linear ...
  • Y. Jin, H. Wang, T. Chugh, D. Guo and K. ...
  • E.M. Kleinberg, On the algorithmic implementation of stochastic discrimination, IEEE ...
  • J. Lee and J.Y. Choi, Texas hospitals with higher health ...
  • A.M. Legendre, Memoire Sur Les Operations Trigonom´etriques: Dont les R´esultats ...
  • J. Lever, M. Krzywinski, and N. Altman, Points of significance: ...
  • X. Li, C. Liang and F. Ma, Forecasting stock market ...
  • K.Y. Liang, S.L. Zeger and B. Qaqish, Multivariate regression analyses ...
  • P. Louis and B. Baesens, Do for-profit microfinance institutions achieve ...
  • R. Mazumder, P. Radchenko and A. Dedieu, Subset selection with ...
  • S.H. Naseri and S. Bavandi, A proposed approach for solving ...
  • A. Ozmen, Sparse regression modeling for short-and long-term natural gas ...
  • A. Painsky and S. Rosset, Cross-validated variable selection in tree-based ...
  • H. Rasouli, M. Imanipour and A. Khatami Firouzabadi, A comprehensive ...
  • J.W. Rocks and P. Mehta, Memorizing without overfitting: Bias, variance, ...
  • F. Santosa and W.W. Symes, Linear inversion of band-limited reflection ...
  • D.J. Sheskin, Handbook of Parametric and Nonparametric Statistical Procedures, Chapman ...
  • F. Smarra, A. Jain, T. De Rubeis, D. Ambrosini, A. ...
  • S.A. Smith, N. Agrawal and S.H. McIntyre, A discrete optimization ...
  • K.A. Smith and J.N. Gupta, Neural networks in business: techniques ...
  • C. Strobl, A. Boulesteix and T. Augustin, Unbiased split selection ...
  • Y. Sun, H. Wang, B. Xue, Y. Jin, G.G. Yen ...
  • C.W. Tan, C. Bergmeir, F. Petitjean and G.I. Webb, Time ...
  • P.N. Tan, M. Steinbach and V. Kumar, Introduction to Data ...
  • H. Tanaka, T. Okuda and K. Asai, Fuzzy mathematical programming, ...
  • J.W. Taylor, Short-term electricity demand forecasting using double seasonal exponential ...
  • R. Tibshirani, Regression Shrinkage and Selection via the Lasso, J. ...
  • M.D. Troutt, W.-K. Pang and S.-H. Hou, Behavioral estimation of ...
  • V. Vapnik and O. Chapelle, Bounds on error expectation for ...
  • V.N. Vapnik and A.Y. Chervonenkis, Recovery of dependencies by empirical ...
  • H. Wang and Y. Jin, A random forest-assisted evolutionary algorithm ...
  • M. Wang, L. Kong, Z. Li, and L. Zhang, Covariance ...
  • W. Wang, X. Liu, and W.K.V. Chan, Imbalanced classification problem ...
  • W.L. Winston, Operations Research: Applications and Algorithms, Cengage Learning, ۱۹۹۷ ...
  • L.A. Zadeh, Information and control, Fuzzy Sets Syst. ۸ (۱۹۶۵), ...
  • S.L. Zeger and K.Y. Liang, Feedback models for discrete and ...
  • Z. Zhang, Too many covariates in a multivariable model may ...
  • Y. Zheng, X. Fu and Y. Xuan, Data-driven optimization based ...
  • H.-J. Zimmermann, Fuzzy programming and linear programming with several objective ...
  • H. Zou, T. Hastie, and R. Tibshirani, On the “degrees ...
  • نمایش کامل مراجع