Antibacterial activity of dromedary camel milk fermented with probiotics against some pathogenic bacteria

Publish Year: 1403
نوع سند: مقاله ژورنالی
زبان: English
View: 27

This Paper With 11 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_VCBR-1-1_009

تاریخ نمایه سازی: 1 خرداد 1403

Abstract:

The production of natural dairies with antimicrobial properties represents a significant advancement in the context of food biopreservation. This study aims to explore the antibacterial properties of a novel standard probiotic-fermented camel milk (PFCM) and assess the impact of product heat treatment and dilution on these properties. A standard PFCM was prepared using a probiotic starter culture (ABT-۱۰) containing Lactobacillus acidophilus La-۵, and Bifidobacterium animalis subsp. lactis BB-۱۲® probiotics. The PFCM subjected to heat treatment to produce two subgroups of heated (H-PFCM) and non-heated (N-PFCM) products. The products were then subjected to chemical and bacteriological evaluation within ten days. The antagonistic activity of N-PFCM against Escherichia coli O۱۵۷:H۷, Pseudomonas aeruginosa, Staphylococcus aureus, Listeria monocytogenes, and methicillin-resistant Staphylococcus aureus (MRSA) was investigated by comparison between antibacterial activity and minimum inhibitory level (MIL) of N-PFCM with its lactic acid content and H-PFCM (p<۰.۰۵). The assessment of the chemical and bacteriological properties of PFCM demonstrated an augmented antibacterial effect. The antibacterial activity of camel milk was enhanced ۲- to ۴-fold after fermentation. The study additionally assessed the antibacterial efficacy of N-PFCM and H-PFCM, comparing it to their lactic acid content, in order to investigate lactic antagonism within PFCM. In this context, N-PFCM demonstrated effective bacterial inhibition at its minimum inhibitory level (MIL), while the lactic acid concentration alone within the MIL did not exhibit antibacterial activity. Furthermore, heat treatment of PFCM at ۸۵°C for ۲ minutes reduced the antibacterial activity by ۱- to ۲-fold in MIL assay. Except for MRSA, the thermal process reduced the antibacterial activity of PFCM to its lactic acid level. These findings reveal the antagonistic impact of lactic acid bacteria (LAB) within N-PFCM. The study concludes that non-thermally abused PFCM retains significant antibacterial properties even at ۸-times dilution, suggesting its potential as a natural antibacterial compound for the bio-preservation of foods.

Authors

Hadi Ebrahimnejad

Department of Food Hygiene and Public Health, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran

Ladan Mansouri-Najand

Department of Food Hygiene and Public Health, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran

Atefeh Nikvarz

Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran

Arousha Ahmadi

Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran