Empirical Mode Decomposition and Optimization Assisted ANN Based Fault Classification Schemes for Series Capacitor Compensated Transmission Line
Publish Year: 1404
نوع سند: مقاله ژورنالی
زبان: English
View: 215
This Paper With 22 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
این Paper در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JOAPE-13-1_005
تاریخ نمایه سازی: 16 خرداد 1403
Abstract:
This paper presents two intelligent classifier schemes for classifying the faults in a series capacitor compensated transmission line (SCCTL). The first proposed intelligent classifier scheme is a particle swarm optimization-assisted artificial neural network (PSO-ANN). The second, proposed one is a teaching-learning optimization-assisted artificial neural network (TLBO-ANN). For each type of fault, the ۳-phase current signals are acquired at the sending end and processed through empirical mode decomposition (EMD), to decompose into six intrinsic mode functions. The neighborhood component analysis is used to extract the best feature intrinsic mode functions. From the identified best feature intrinsic mode functions, the energy of each phase of the line is computed. The energy of each phase is fed as inputs for both PSO-ANN and TLBO-ANN classifiers. The practicability of the proposed intelligent classifier schemes has been tested on a ۵۰۰\,kV, ۵۰\,Hz, and ۳۰۰\,km long line with a midpoint series capacitor using MATLAB/Simulink Software. The results demonstrate that the classifier schemes are able to accurately classify faults in less than a half-cycle. Furthermore, the efficacy of the proposed intelligent classifier schemes has been evaluated using Performance Indices including Kappa Statistics, Mean Absolute Error, Root Mean Square Error, Precision, Recall, F-measure, and Receiver Operating Characteristics. From the results of Performance Indices, it is concluded that the proposed TLBO-based artificial neural network classifier outperforms the PSO-based artificial neural network classifier. Finally, the efficacies of proposed intelligent classifier schemes are compared to existing approaches.
Keywords:
Artificial Intelligence , Particle swarm optimization-assisted artificial neural network , Teaching-learning-optimization-assisted artificial neural network , Power System Faults , Identification , Series capacitor compensation line , Signal Processing , Empirical mode decomposition
Authors
O. koduri
Department of Electrical Engineering, Faculty of Engineering & Technology, Annamalai University, Annamalainagar, ۶۰۸۰۰۲, Tamil Nadu, India.
R. Ramachandran
Department of Electrical Engineering, Faculty of Engineering & Technology, Annamalai University, Annamalainagar, ۶۰۸۰۰۲, Tamil Nadu, India.
M. Saiveerraju
Department of Electrical & Electronics Engineering, Sagi Rama Krishnam Raju Engineering College Bhimavaram-۵۳۴۲۰۲, Andhra Pradesh, India
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :