The silk proteins, sericin and fibroin in silkworm, Bombyx mori Linn., A review

Publish Year: 1386
نوع سند: مقاله ژورنالی
زبان: English
View: 39

This Paper With 14 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_CJES-5-2_001

تاریخ نمایه سازی: 21 خرداد 1403

Abstract:

The domesticated silkworm, Bombyx mori Linn., a lepidopteran molecular model and an important economic insect that are emerging as an ideal molecular genetic resource for solving a broad range of biological problems. The silkworm, B. mori produces massive amount of silk proteins during the final stage of larval development. These proteins are stored in the middle silk gland and they are discharged through the anterior duct and spinneret, at the end of the fifth instar. Two kinds of silk proteins have been distinguished as major components of silk cocoons, the first being fibroin, a fibrous protein composed of heavy (H) chain, Light (L) chain and glycoprotein linked by disulfide bonds and the second being sericin a natural macromolecular protein, serving as an adhesive to unite fibroin for making silk cocoons of silkworm, ۳. man". Recently, silkworm is being used as biofactory for the production of useful protein using the silk gland, which has promoted the technological development in sericulture. With the above background silkworm can be classified as a value added biomaterial for medical application, application of silk protein fibroin and sericin as a biomaterial and other seri—byproducts. The present paper overviews  some important studies carried out on sericin and fibroin of silkworm, Bomlvyx mori Linn. The domesticated silkworm, Bombyx mori Linn., a lepidopteran molecular model and an important economic insect that are emerging as an ideal molecular genetic resource for solving a broad range of biological problems. The silkworm, B. mori produces massive amount of silk proteins during the final stage of larval development. These proteins are stored in the middle silk gland and they are discharged through the anterior duct and spinneret, at the end of the fifth instar. Two kinds of silk proteins have been distinguished as major components of silk cocoons, the first being fibroin, a fibrous protein composed of heavy (H) chain, Light (L) chain and glycoprotein linked by disulfide bonds and the second being sericin a natural macromolecular protein, serving as an adhesive to unite fibroin for making silk cocoons of silkworm, ۳. man". Recently, silkworm is being used as biofactory for the production of useful protein using the silk gland, which has promoted the technological development in sericulture. With the above background silkworm can be classified as a value added biomaterial for medical application, application of silk protein fibroin and sericin as a biomaterial and other seri—byproducts. The present paper overviews  some important studies carried out on sericin and fibroin of silkworm, Bomlvyx mori Linn.    REFERENCES Ahn, ].S., Choi, H.K., Lee, K.I-I., Nahm, ].H.and Cho, S. (۲۰۰۱) Novel mucoadhesive polymer prepared by template polymer- rization of acrylic acid in the presence of silk sericin. ]. Appl. Polym. Sci. ۸۰, ۲۷۴-۲۸۰. Akai, I-۱., Imai, T. and Tsubouchi, K. (۱۹۸۷) Fine structural changes of liquid silk in the silkgland during the spinning stage of Bombyx mori larvae. I. scric. Sci. Ipn. ۵۶, ۱۳۱-۱۳۷. Akai, I-I.T., Nagashima, T., lnoue, S., Kobayashi, I. and Tarmura, T. (۲۰۰۵) Functional recovery of transgenic silk gland. ۲۰”‘ congress of the international sericu- ltural commission, Bangalore, India, ۱۵- ۱۸ December. p. ۱۱۹.   Annamaria, S., Maria, R., Tullia, M., Silvio, S. and Orio, C. (۱۹۹۸) The microbial degradation of silk: a laboratory investigation. Int. Biodeterior. Biodegrad. ۴۲, ۲۰۳- ۲۱۱. Asakura, T., Yamare, T., Nakazawa, Y., Kamada, T. and Ando, K. (۲۰۰۱) Structure of Bombyx mori silk fibroin before spinning in solid state studied with wide angle X- ray scattering and ۱۳ cross po۱arization/ magic angle spinning NMR. Biopolymers. ۵۸, ۵۲۱-۵۲۵. Aslani, M.A. and Era], M. (۱۹۹۴) Investigation of uranium recovery from dilute aqueous solutions using silk fibroin. Biol. Trace Elem. Res. ۴۳, ۷۳۷-۷۴۳. Bose, P.C., Majumdar, SK. and Sengupta, K. (۱۹۸۹) Role of the amino acids in ۷۴ silkworm, Bombyx mori L. nutrition and their occurrence in haemolymph, silk gland and silk cocoons —A review. Indian I. Seric. ۲۸, ۱۷-۳۱. Chavancy, G. (۲۰۰۵) Silkworm for non-textile industries. Souveni, ۲۰”‘ congress of  he international sericultural commission, Bangalore, India ۱۵-۱۸۳‘ December ۲۰۰۵. pp. ۱-۶. Chevillard, M., Couble, P. and Prudhomme, J.C. (۱۹۸۶a) Complete nucleotide sequence of the gene encoding the Bombyx mori silk protein P۲۵ and predicted amino acid sequence of the protein. Nucleic Acids Res. ۱۴, ۶۳۴۱-۶۳۴۲. Chevillard, M., Deleage, G. and Couble, P. (۱۹۸۶b) Amino acid sequence and putative conformational characteristic of the P۲۵ silk protein of Bombyx mori. Sericologia. ۲۶, ۴۳۵-۴۴۹. Chisti, Y. (۱۹۹۸) Strategies in downstream processing; in Bioseparation and bioprocess- sing: a handbook. G. Subramanian (ed). New York: Wiley-VCH. pp. ۳-۳۰. Demura, M., Asakura, T., Kuroo, T., (۱۹۸۹) Immobilization of biocatalysts with Bombyx mori silk fibroin by several kinds of physical treatment and application to glucose sensors. Biosensors, ۴, ۳۶۱-۳۷۲.   Feiying, S., Boxiong, Z., Chenfu, L., Bo, I-I., Jianke, L.I., Iianying, L.l., Jifeng, ]., Kefeng, X.U., Uanjie, Y.Y., Jianshe, L., Haisheng, X.U., Songkun, S.U. and Guohua, Y. (۲۰۰۵) Analysis of protein variety of the middle silk gland cells of the ۵"’ instar larvae of silkworm Bombyx mori L., ۲۰th congress of the international sericultural commission, Bangalore, India ۱۵-۱۸۳‘ December. pp. ۱۱۹. Gamo, T. and Soto, S. (۱۹۸۵) Ultra structural study of the posterior silk gland in the Nd, Nd-s and N۵-s mutants with a defect of fibroin synthesis. ۱. seric. Sci. Jpn. ۵۴, ۴۱۲- ۴۱۹. Gregory, H.A., Diaz, F., Caroline, ]., Tom, C., Rebecca, L.H., Jingsong, C., Helen, L., John, R. and David, L.K. (۲۰۰۳) Silk based biomaterials. Biomaterials. ۲۴, ۴۰۱-۴۱۶. Gotoh, K., lzumi, H., Kanamoto, T., Tamada, Y., Nakashima, H. (۲۰۰۰) Sulfated fibroin, a novel sulfated peptide derived from silk, inhibits human immunodeficiency virus replication in vitro. Biosci Biotechnol Related Articles, Books Biochem. ۶۴, ۱۶۶۴-۱۶۷۰. Culrajani, M.L. (۱۹۸۸) Degumrning of silk; in Silk dyeing printing and finishing, M.L. Gulrajani (ed), Department of Textile Technology Indian Institute of Techno- logy, New Delhi. pp. ۶۳-۹۵. Gulrajani M.L. (۲۰۰۵) Sericin: A Bio-molecule of value. Souveni ۲۰”‘ congress of the international sericultural commission, Bangalore, India ۱۵-۱۸*“ December ۲۰۰۵. pp. ۲۱-۲۹. Hatakeyama, H. (۱۹۹۶) Biodegradable sericin-containing polyurethane and its production. Iapan Patent ۰۸-۰۱۲۷۳۸A. Hu, K. (۲۰۰۶) Biocompatible Fibroin Blended Films with Recombinant Human-like Collagen for Hepatic Tissue Engineering. Ioarnal of Bioactive and Compatible Polymers. ۲۱, ۲۳-۳۷. Iizuka, E. (۱۹۶۹) Silk sericin of Bombyx mori L. Biochem. Biophys. Acta. ۱۸۱, ۴۷۷- ۷۹. Inoue, ۸., Tanaka, K., Arisaka, F., Kimura, ۸., Ohtomo, K. and Mizuno, S. (۲۰۰۰) Silk fibroin of Bombyx mori is secreted, assembling a high molecular mass elementary unit consisting of I-I-chain, L- chain and P۲۵, with a ۶:۶:۱ molar ratio. ۱. Biol. Chem. ۲۷۵, ۴۰۵۱۷-۴۰۵۲۸. Inoue, ۵., Kanda, T., Imamura, M., Quau, G.X., Kojma, K., Tanaka, I-I., Tornita, M., I-lino, R., Yoshizato, K., Mizuno, S. and Tamura, T. (۲۰۰۵) A fibroin secretion deficient silkworm mutant, Nd-sD, provides an efficient system for producing recombinant proteins. Insect Biochem. Mol. Biol. ۳۵, ۵۱-۹۰. Inouye, K., Kurokawa, M., Nishikawa, S. and Tsukada, M. (۱۹۹۸) Use of Bombyx mori silk fibroin as a substratum for cultivation of animal cells. ].Biochem. Biophys. Meth.۱۸, ۱۵۹-۱۶۴.   Ishikawa, H. and Hirabayashi, K. (۱۹۶۸) Compilation of studies of silk reeling and silk. Seislii — Kinu Kenkya — Happyo Sharoku, ۱۸, ۵۶-۵۹. Ishikawa, I-۱., Nagura, M. and Tsuchiya, Y. (۱۹۸۷) Fine structure and physical properties of blend film compose of silk sericin and poly (vinyl alcohol). Sen’I Gakkaislzi , ۴۳, ۲۸۳-۲۷۰.   Iain, Y.E., Iianying, l_..l., Iine, C. and Boxing, Z. (۲۰۰۵) Analysis of ۲D-page patterns of protein from Posterior silk gland of different breeds silkworm Bombyx mori L. on the ۴*" day in ۵”’ instar. ۲۰th congress of the International Sericultural Commission, Bangalore, India ۱۵-۱۸”‘ December. pp. ۱۲۰. Kato, N., Sato, S., Yamanaka, A., Yamadarn, I-I., Fuwam, N. and Nomura, M. (۱۹۹۸) Silk protein, sericin, inhibits lipid peroxidation and tyrosinase activity. Biosci. Biotechnol. Biochem. ۶۲, ۱۴۵-۱۴۷. Kenji, ۰., Somashekar, R., Noguchi, K. and Syuji, I. (۲۰۰۱) Refined molecular and crystal structure of silk Ibased on Ala-Gly and (Ala-Gly)۲ Ser-Gly peptide sequence. Biopolyrners. ۵۹, ۳۱۰-۳۱۹. Komatsu, K. (۱۹۷۵) Studies on dissolution behaviors and structural characteristic of silk Sericin. Bull. Sericull. Exp. Ste. ۲۶, ۱۳۵- ۲۵۶. Kornatsu, K., ۱۹۸۰, Recent advances in sericin research. I. Sericult. Sci. Iaplm. ۶۹, ۴۵۷-۴۶۵. Komatsu, K. (۱۹۸۲) Silk III. Sericin physical structure. Sericologia. ۲۲, ۱۴-۲۳. Konishi, T. (۲۰۰۰) Structure of fibroin — n in Structure of silk yam. Hojo, N. (ed) Oxford and IBH publication Co. Pvt. Ltd., New Delhi. pp. ۲۶۷-۲۷۷. Kurioka, A. and Yamazaki, M. (۲۰۰۲) Purification and idetification of flavonoids from the yellow green cocoon shell (Sasamayu) of the silkworm, Bombyx mori. Biosci. Biotechnol. Biochem. ۶۶, ۱۳۹۶-۱۳۹۹. Li, X. (۱۹۹۶) Usages of sericin in durable material. China patent.۱۱۱۶۲۲۷A. Matta, A., Migliaresi, C., Faccioni, F., Torricelli, P., Fini, M. and Giardino, R. (۲۰۰۴) fibroin hydrogels for biomedical applications, preparation, characterization and in vitro cell culture studies. I. Biomater. Sci. Polym. ۱۵, ۸۵۱-۸۶۴. Murase, M. (۱۹۹۴) Method for solubilizing and molding cocoon silk, artificial organ made of cocoon silk, and medical element made of cocoon silk. Ioplm Prztem‘ ۰۶- ۱, ۶۶۸۵۰A. Mlnoura, N ., Aiba, S., Gotoh, Y., Tsukada, M. and Imai, T. (۱۹۹۵) Attachment and growth of cultured fibroblast cells on silk protein matrices. I. Biomed. Mat. ۲۹, ۱۲۱۵- l۲۲l. Mlyairi, S. and Sugiura, M. (۱۹۷۸) Properties of b-glucosidase immobilized in sericin membrane. I. Fermeii. Tech. ۵۶, ۳۰۳-۳۰۸. Mlmguithi, K., Iwatsubo, T. and Aisaka, N. (I۹۹۱) Separating membrane made of mm-linked thin film of sericin and  ۷۵  production ۲۸۴۳۳۷A.   Mori, K., Tanaka, K., Kikuch, Y., Waga, M., Waga, S. and Mizuno, S. (۱۹۹۵) Production of a chimeric fibroin light-chain polyp- eptide in a fibroin secretion- deficient naked pupa mutant of the silkworm Bombyx mori. I. Mol. Bio. ۲۵۱, ۲۱۷-۲۲۸. Nakajima, Y. (۱۹۹۴) Liquid crystal element. Iaprm Patent, ۰۶-۰۱۸۸۹۲. Padamwar, M.N., Pawar, A.P., Daithankar, A.V. and Mahadik, KR. (۲۰۰۵) Silk sericin as a moisturizer an in vivo study. I. Cosmet. Dermat. ۴, ۲۵۰-۲۵۷. Phillips, D.M., Drummy L.F., Naik, R.R., Delong, H.C., Fox, D.M., Trulove, P.C. and Mantz, RA. (۲۰۰۵) Silk fibers from an ionic liquid solution. I. Mater. Chem. ۱۵, ۴۲۰۶. Robson, RM. (۱۹۸۵) Silk composition, structure and properties; in Hand book of fibre Science and Technology, vol IV, Lewin, M and E.M pearce (ed), Mercel. Dekker Inc., New York. pp. ۶۴۹-۷۰۰. Rui, H.G. (۱۹۹۸) Quality of Cocoon Filament; in Silk reeling. H. G Rui (ed), Oxford ۸: IBH Publication Co. Pvt. Ltd., New Delhi, pp. ۵۸-۶۹. Sadov, F., Korchagin, M. and Matetsky, A. (۱۹۸۷) Chemical technology of fibrous materials. Mir Publication, Moscow, pp. ۳۰۶-۳۰۷. Shimizu, M. (۲۰۰۰) Structural basis of silk fibre; in Structure of silk yarn” Vol. ۱ biological and physical aspects. N. I-Iojo (ed.), Oxford & IBH Publication Co. Pvt. Ltd., New Delhi, pp. ۷-۱۷. Shimura, K., Kikuchi, A., Katagata, Y. and Ohtomok, K. (۱۹۸۲) The occurrence of smallest component protein in the cocoon of Bombyx mori. I. Seric. Sci. Ipn. ۵۱, ۲۰-۲۶. Tamada, Y. (۱۹۹۷) Anticoagulant and its production. Inprm Potent ۰۹-۲۲۷۴۰۲A. Tanaka, K., Kajiyama, N., Isohikura, K., Waga, S., Kukuchi, A., Ohtomo, K., Takagi, T. and Mizuno, S. (۱۹۹۹) Determination of the site of disulfide linkage between heavy and light chain of silk fibroin produced by Bombyx mori. Biochem. Biophys. Acta. ۱۴۳۲, ۹۲-۱۰۳. Tanaka, K. amd Mizuno, S. (۲۰۰۱) Hornologues of fibroin L-chain and P۲۵ of Bombyx mori are present in Dendroiimus spectobilis and Papilio xullms but not detectable in Antheraea yarnamai. Insect Biochem. Mol Biol. ۳۱, ۶۶۵-۶۷۷. Tokutake, S. (۱۹۸۰) Isolation of the smallest component of silk protein. Biochemistry Biochem. J. ۱۸۷, ۴۱۳-۴۱۷. Tsubouchi, K. (۱۹۹%) Wound covering material. US patent ۵۹۵۱۵۰۶. Tsubouchi, K. (۱۹۹۹b) Occlusive dressing consisting essentially of silk fibroin and silk sericin and its production. japan Patent ۱۱-۰۷۰۱۶۰A. Tsukada, M. (۱۹۸۳) Structure of silk sericins removed from wild silk by boiling in water. J. Sericalt. Sci. Japan. ۵۲, ۲۹۶-۲۹۹. Tsukada, M., Hayasaka, S., Inoue, K., Nishikawa, S. and Yamamoto, S. (۱۹۹۹) Cell culture bed substrate for proliferation of animal cell and its preparation. Japan Patent ۱۱-۲۴۳۹۴۸A. Wu, C., Tian, B.Z., Zhu, D., Yan, )(.M., Chen, W and Xu, G.Y. (۱۹۹۶) Properties and application of wound protective membrane made from fibroin. In International silk congress, Suzou Institute of silk technology, Suzou, China, ۲۵-۲۸۳ October, pp. ۷۹-۸۷. Yamada, M. (۱۹۷۸) Amino acid composition of the sericin extracted from cocoon of the mulberry wild silkworm, Bombyx mori and its species specificity. I. Sericult. Sci. Japan. ۴۷, ۱۰۸-۱۱۲. Yamada, H., Fuwa, N. and Nomura, M. (۱۹۹۳) Synthetic fiber having improved hygroscopicity. Japan patent ۰۵—۳۳۹۸۷۸A. Yamada, H. and Fuwa, N. (۱۹۹۴) Protein containing high molecular material and its application. Japan patent ۰۶-۰۸۰۷۴۱A. Yamaguchi, K., Kikuchi, Y., Takagi, T., Kikuchi, A., Oyama, F., Shimura, K. and Mizuno, S. (۱۹۸۹) Primary structure of the silk fibroin light chain determined by cDNA sequencing and peptide analysis. I. Mol. Bio. ۲۱۰, ۱۲۷-۱۳۹. Yamamoto, T., Miyajima, T., Mase, K. and Iizuka, T. (۲۰۰۲) Breeding of silkworm  ace ‘Sericin hope’ secreting silk protein in which sericin is contained high concen tration. Annual report of National institute of Agrobiological Science, Japan. pp. ۹۹-۱۰۰. Yoshimura, T., Shimizu, Y., Kurotani, W., Yarnaoka, R. and I-Iayashiya, K. (۱۹۸۹) Application of fibroin membrane to immobilizing coenzecl insect cell culture for use as vaccine. Agri and Biol. Chem. ۵۲, ۳۲۰۱-۳۲۰۲. Yoshii, F., Kume, N., Makuuchi, K. and Sato, F. (۲۰۰۰) I-lydrogel composition containing silk protein. Japan Patent ۰۶-۰۱۷۳۷۳A. Zhaorigetu, S.N., Sasakim M., Watanbe, H. and Kato, N. (۲۰۰۳) Silk protein, sericin, suppresses DMBA-TPA induced mouse skin tumorigenesis by reducing oxidative stress, inflammatory responses and endogenous tumor promoter TNF—alpha. Oncol. Rep. ۱۰, ۵۳۷-۵۴۳. Zhou, C.Z., Confalonieri, F., Medina, N., Zivanovic, Y., Esnault, C., Iacquet, T., Ianin J., Duguet, M., Perasso, R. and Liz, G. (۲۰۰۰) Fine organization of Bombyx mori fibroin heavy chain gene. NaCl. Acids Res. ۲۸, ۲۴۱۳-۲۴۱۹.

Authors

M. Mondal

Silkworm Physiology Laboratory, Central Sericuitural Research and Training Institute Mysore, ۵۷۰۰۰۸, Karnataka, India.

K Trivedy

Silkworm Physiology Laboratory, Central Sericuitural Research and Training Institute Mysore, ۵۷۰۰۰۸, Karnataka, India.

SN Irmal Kumar

Silkworm Physiology Laboratory, Central Sericuitural Research and Training Institute Mysore, ۵۷۰۰۰۸, Karnataka, India.