سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

Hole cleaning assessment in horizontal foam drilling using artificial neural network and multiple linear regression

Publish Year: 1392
Type: Conference paper
Language: English
View: 1,825

This Paper With 11 Page And PDF Format Ready To Download

این Paper در بخشهای موضوعی زیر دسته بندی شده است:

Export:

Link to this Paper:

Document National Code:

RESERVOIR02_020

Index date: 1 June 2013

Hole cleaning assessment in horizontal foam drilling using artificial neural network and multiple linear regression abstract

Foam drilling is increasingly used to develop low pressure reservoir or highly depleted mature reservoirs because of minimizing the formation damage and potential hazardous drilling problems. Prediction of the cuttings concentration in the wellbore annulus as a function of operational drilling parameters such as wellbore geometry, pumping rate, drilling fluid rheology and density, and maximum drilling rate is very important for optimizing these parameters. This paper describes a simple and more reliable artificial neural network (ANN) method and multiple linear regression (MLR) to predict cuttings concentration during foam drilling operation. This model is applicable for various borehole conditions using some critical parameters associated with foam velocity, foam quality, hole geometry, subsurface condition (pressure and temperature), and pipe rotation. The average absolute percent relative error (AAPE) between the experimental cuttings concentration and ANN model is less than 6%, and using MLR, AAPE is less than 9%. A comparison of the ANN and mechanistic model was done. The AAPE values for all datasets in this study were 3.2 % and 10.3 % for ANN model and mechanistic model respectively

Hole cleaning assessment in horizontal foam drilling using artificial neural network and multiple linear regression Keywords:

Hole cleaning assessment in horizontal foam drilling using artificial neural network and multiple linear regression authors

R Rooki

PhD student of Mining Engineering, Faculty of Mining, Petroleum and Geophysics, Shahrood University of Technology, Shahrood, Iran

F Doulati Ardejani

Professor, Faculty of Mining, Petroleum and Geophysics, Shahrood University of Technology,Shahrood, Iran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
Zhu T, Volk L, Carroll H. Industry state -of-the art ...
Li Y, Kuru E. Numerical modeling of cuttings transport with ...
Ozbayoglu, ME. Cuttings transport with foam in horizontal and highly-inclined ...
Wang R, Cheng R, Wang H, Bu Y. Numerical simulation ...
Nazari T, Hareland G, Azar JJ. Reviw of cuttings transport ...
Nguyen D, Rahman SS. A three-layer hydraulic program for effective ...
Yu M, Takach NE, Nakamura DR. Shariff MM. An experimental ...
Piroozian A, Ismail I, Yaacob Z, Babakhani P, Ismail ASI. ...
Chen Z. Cuttings Transport with Foam in Horizontal Concentric Annulus ...
Duan M. Study of cuttings transport using foam with dril] ...
Machado CJ, Ikouk CV. Experimental determination of solids fraction and ...
Okpobiri GA, Ikoku CU. Volumetric requirements for foam and mist ...
Owayed JF. Simulation of water influx during underbalanced foam drilling. ...
Saintpere S, Marcillat Y, Bruni F, Toure A. Hole cleaning ...
Martins AL, Luorenco AMF, de Sa CHM. Foam properties requirements ...
Capo J, Yu M, Miska S. Z, Takach N.E, Ahmed ...
Li Y, Kuru E. Numerical Modeling of Cuttings Transport with ...
Chen Z, Ahmed RM, Miska SZ, Takach NE, Yu M, ...
Duan M, Miska S, Yu M, Takach N, Ahmed R, ...
Hagan MT, Demuth HB, Beale MH. Neural network design, PWS ...
Ternyik J, Bilgesu HI, Mohaghegh S. Virtual measuremens in pipes: ...
Mukherjee H. An experimental study of inclined two-phase flow. Ph.D. ...
Osman ESA. Artificial neural network models for identifying flow regimes ...
Shippen ME, Scott SL. A neural network modl for prediction ...
Ozbayoglu ME, Miska SZ, Reed T, Takach N. Analysis of ...
Ozbayoglu ME, Ozbayogl MA. Estimating flow patterns and frictional pressure ...
Ashena R, Moghadasi J. Bottom hole pressure estimation using evolved ...
Rooki R, Doulati Ardejani F, Moradzadeh A, Kelessidis _ Nourozi ...
Sanchez RA. Azar JJ. Bassal A A. Martins AL. Effect ...
Haykin S. Neural networks: A comprehensive foundation. 2nd edition; Upper ...
Demuth H, Beale M. Neural network toolbox for uSe with ...
Hornik K, Stinchcombe M, White H. Multilayer feed forward networks ...
Fletcher D, Goss E. Forecasting with neural networks: an application ...
نمایش کامل مراجع