سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

Analysis and Prediction of Rainfall with Oceanic Nino Index and Climate Variables Using Correlation Coefficient and Deep Learning

Publish Year: 1403
Type: Journal paper
Language: English
View: 120

This Paper With 16 Page And PDF Format Ready To Download

این Paper در بخشهای موضوعی زیر دسته بندی شده است:

Export:

Link to this Paper:

Document National Code:

JR_CEJ-10-5_001

Index date: 19 June 2024

Analysis and Prediction of Rainfall with Oceanic Nino Index and Climate Variables Using Correlation Coefficient and Deep Learning abstract

This article presents the relationship between the Oceanic Nino Index (ONI) and monthly rainfall on the southern and eastern coast of Thailand, specifically in Narathiwat, Pattani, and Yala provinces, where influences have been commonly observed. This research aims to study the relationship between the Oceanic Nino Index (ONI) and monthly rainfall to develop a model for predicting monthly rainfall. Despite previous related research, there has been no in-depth study on the relationship between the Oceanic Nino Index (ONI) and monthly rainfall in areas adjacent to the sea. The correlation coefficient was used to determine the relationship, revealing that the ONI value is significantly correlated with the amount of rainfall in the current month and the following month. This correlation paved the way for developing a model to predict monthly rainfall. Multiple linear regression, recurrent neural networks, and long short-term memory models were employed for this purpose. The study found that utilizing a recurrent neural network yielded the best prediction efficiency, with Mean Absolute Error (MAE) values of 112.76 mm for Narathiwat province, 81.06 mm for Pattani province, and 97.67 mm for Yala province. Doi: 10.28991/CEJ-2024-010-05-01 Full Text: PDF

Analysis and Prediction of Rainfall with Oceanic Nino Index and Climate Variables Using Correlation Coefficient and Deep Learning Keywords:

Analysis and Prediction of Rainfall with Oceanic Nino Index and Climate Variables Using Correlation Coefficient and Deep Learning authors

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
Cai, W., Ng, B., Geng, T., Jia, F., Wu, L., ...
Cheng, L., Abraham, J., Trenberth, K. E., Boyer, T., Mann, ...
Glantz, M. H., & Ramirez, I. J. (2020). Reviewing the ...
L’Heureux, M. L., Tippett, M. K., Wheeler, M. C., Nguyen, ...
Prasetyo, Y., & Nabilah, F. (2017). Pattern Analysis of El ...
Varotsos, C., Sarlis, N. V., Mazei, Y., Saldaev, D., & ...
Silva, K. A., de Souza Rolim, G., & de Oliveira ...
Wang, G. G., Cheng, H., Zhang, Y., & Yu, H. ...
Bouach, A. (2024). Artificial neural networks for monthly precipitation prediction ...
Van Oldenborgh, G. J., Hendon, H., Stockdale, T., L’Heureux, M., ...
Bochenek, B., & Ustrnul, Z. (2022). Machine Learning in Weather ...
Haggag, M., Siam, A. S., El-Dakhakhni, W., Coulibaly, P., & ...
Kumar, V., Azamathulla, H. Md., Sharma, K. V., Mehta, D. ...
Zhang, Y., Xie, D., Tian, W., Zhao, H., Geng, S., ...
Apipattanavis, S., Ketpratoom, S., & Kladkempetch, P. (2018). Water Management ...
Maprasit, S., Pradabphetrat, P., Madmanang, R., Sathawong, S., Boonkaew, R., ...
Nur Amyliyana Wan Faizurie Zaidee, W., Shakir Mohd Saudi, A., ...
Hidayat, R., Ando, K., Masumoto, Y., & Luo, J. J. ...
Irwandi, H., Pusparini, N., Ariantono, J. Y., Kurniawan, R., Tari, ...
Ueangsawat, K., Nilsamranchit, S., & Jintrawet, A. (2015). Fate of ...
Ahmed, H. A. Y., & Mohamed, S. W. A. (2021). ...
Shaker Reddy, P. C., & Sureshbabu, A. (2019). An Enhanced ...
Agboola, A., Gabriel, A., Aliyu, E., & Alese, B. (2014). ...
Janarthanan, R., Balamurali, R., Annapoorani, A., & Vimala, V. (2021). ...
Barrera-Animas, A. Y., Oyedele, L. O., Bilal, M., Akinosho, T. ...
Rahman, A., Abbas, S., Gollapalli, M., Ahmed, R., Aftab, S., ...
Mohammadi, B. (2021). A review on the applications of machine ...
Singh, A. K., Kumar, P., Ali, R., Al-Ansari, N., Vishwakarma, ...
Hu, Z., Zhang, Y., Zhao, Y., Xie, M., Zhong, J., ...
Melesse, A. M., Khosravi, K., Tiefenbacher, J. P., Heddam, S., ...
Rajabi-Kiasari, S., & Hasanlou, M. (2020). An efficient model for ...
Mosavi, A., Ozturk, P., & Chau, K. (2018). Flood Prediction ...
Motta, M., de Castro Neto, M., & Sarmento, P. (2021). ...
Htike, K. K., & Khalifa, O. O. (2010). Rainfall forecasting ...
Hong, W. C. (2008). Rainfall forecasting by technological machine learning ...
Sivapragasam, C., Liong, S. Y., & Pasha, M. F. K. ...
Feng, Q., Wen, X., & Li, J. (2015). Wavelet Analysis-Support ...
Li, Z., Liu, F., Yang, W., Peng, S., & Zhou, ...
Yu, Y., Si, X., Hu, C., & Zhang, J. (2019). ...
Van Houdt, G., Mosquera, C., & Nápoles, G. (2020). A ...
Van, S. P., Le, H. M., Thanh, D. V., Dang, ...
Haidar, A., & Verma, B. (2018). Monthly Rainfall Forecasting Using ...
Van Viet, L. (2021). Development of a new ENSO index ...
Asuero, A. G., Sayago, A., & González, A. G. (2006). ...
Mardia, K. V. (1976). Linear circular correlation coefficients and rhythmometry. ...
Singh, D., & Singh, B. (2020). Investigating the impact of ...
Uyanık, G. K., & Güler, N. (2013). A Study on ...
Hewamalage, H., Bergmeir, C., & Bandara, K. (2021). Recurrent Neural ...
Medsker, L. R., & Jain, L. (2001). Recurrent neural networks. ...
Lin, Y., Yan, Y., Xu, J., Liao, Y., & Ma, ...
Fischer, T., & Krauss, C. (2018). Deep learning with long ...
Apaydin, H., Feizi, H., Sattari, M. T., Colak, M. S., ...
نمایش کامل مراجع