Understanding continuance intention of subscription video-on-demand based over-the-top (OTT) platforms: A multiple moderation approach
Publish place: Iranian Journal of Management Studies، Vol: 17، Issue: 3
Publish Year: 1403
نوع سند: مقاله ژورنالی
زبان: English
View: 231
This Paper With 14 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JIJMS-17-3_017
تاریخ نمایه سازی: 10 تیر 1403
Abstract:
OTT (over-the-top) platforms that stream media directly to viewers via the Internet, bypassing cable, broadcast, and satellite television platforms, are one of the fastest-growing platforms in India. This study investigates the variables influencing continuance intention to subscribe to video-on-demand streaming media services. Utilizing the expectation confirmation model (ECM) and adding habit and content availability, the moderating effects of those variables are examined. SmartPLS was used for Partial Least Squares Structural Equation Modeling (PLS-SEM) to assess the results of the measurement and structural models. The findings show that perceived usefulness and expectation had a significant impact on satisfaction and that the effect of satisfaction was significant on continuance intention to subscribe. Research establishes that habit and content availability moderate the association between satisfaction and continuance intention. The study provides valuable insights for service providers, marketers, and practitioners to strengthen continuance intentions.
Keywords:
Authors
Shaply Abdul Kareem
VIT Business School, Vellore Institute of Technology, Vellore, India ۲. VIT Business School, Vellore Institute of Technology, Vellore, India
Pulidindi Venugopal
VIT Business School, Vellore Institute of Technology, Vellore, India
D Yuvaraj
VIT Business School, Vellore Institute of Technology, Vellore, India
S Priya
Kingston Engineering College, Vellore, India
S Devi
GITAM School of Business School, Visakhapatnam, India
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :