Proposing New Artificial Intelligence Models to Estimate Shear Wave Velocity of Fine-grained Soils: A Case Study

Publish Year: 1403
نوع سند: مقاله ژورنالی
زبان: English
View: 178

This Paper With 11 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

این Paper در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_IJE-37-6_013

تاریخ نمایه سازی: 23 تیر 1403

Abstract:

Dynamic parameters are the most important geotechnical data used to understand the behavior of soil media under dynamic loads and to recognize the seismic response of the soil. Several in-situ and laboratory geophysical tests, such as the down-hole test, are used to determine these parameters. Since this experiment is costly and time-consuming and the preparation of appropriate boreholes is not easy, it is preferable to estimate the results of this test with the help of empirical correlations or experimental models. The main output of the down-hole test is the shear wave velocity (VS) of soils, which can be used to obtain the dynamic shear modulus (Gs) indirectly. The relationship between physical properties and mechanical specifications of soils is a well-known principle of geotechnical engineering. Utilizing the results of ۱۹ down-hole experiments and available geotechnical data in the southern regions of Tehran, as well as the inputs of an adaptive neuro-fuzzy inference system (ANFIS). This study attempts to provide practical models to predict shear wave velocity of fine-grained soils in Tehran. Two new models have been proposed as a result of preprocessing and smart modeling. The independent variables of the first suggested model included the moisture content, plasticity index (PI), liquid limit (LL), depth of test, and grain size distribution of soils. In the second model, the number of standard penetration test (NSPT) is also used in addition to the mentioned independent variables. The proposed models had coefficients of determination (R۲) of ۰.۷۴ and ۰.۸ for the total training and validation data, respectively.

Keywords:

Fine-grained soil , Shear wave velocity , Down-hole test , Geophysics , adaptive neuro-fuzzy inference system

Authors

M. Khanmohammadi

Department of Civil Engineering, Isfahan University of Technology, Isfahan, Iran

S. Razavi

Department of Mining Engineering, Islamic Azad University, Science & Research Branch, Tehran, Iran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • Standard A. D۷۴۰۰-۰۸, ۲۰۰۸," Standard Test Methods for Downhole Seismic ...
  • Razavi S, Goshtasbi K, Noorzad A, Ahangari K. Proposing new ...
  • Mohammadzadeh S D, Kazemi S-F, Mosavi A, Nasseralshariati E, Tah ...
  • Kordnaeij A, Kalantary F, Kordtabar B, Mola-Abasi H. Prediction of ...
  • Moayed RZ, Kordnaeij A, Mola-Abasi H. Pressuremeter modulus and limit ...
  • Bardhan A, Singh RK, Ghani S, Konstantakatos G, Asteris PG. ...
  • Khanmohammadi M, Armaghani DJ, Sabri Sabri MM. Prediction and optimization ...
  • Banaei Moghadam S, Khanmohammadi M. Prediction of time-dependent bearing capacity ...
  • Banaei Moghadam S, Khanmohammadi M. Proposing new models to predict ...
  • Yadav A, Yadav K, Sircar A. Feedforward neural network for ...
  • Calderón‐Macías C, Sen MK, Stoffa PL. Artificial neural networks for ...
  • Kim J, Kang J-D, Kim B. Machine-learning models to predict ...
  • Aladag C, Kayabasi A, Gokceoglu C. Estimation of pressuremeter modulus ...
  • Kosko B. Neural networks and fuzzy systems: a dynamical systems ...
  • Rajabi M, Bohloli B, Ahangar EG. Intelligent approaches for prediction ...
  • Behnia D, Ahangari K, Noorzad A, Moeinossadat SR. Predicting crest ...
  • Kartalopoulos SV, Kartakapoulos SV. Understanding neural networks and fuzzy logic: ...
  • Jang J-S, Sun C-T. Neuro-fuzzy modeling and control. Proceedings of ...
  • Hung M-C, Yang D-L, editors. An efficient fuzzy c-means clustering ...
  • Baziar M, Nabizadeh R, Mahvi AH, Alimohammadi M, Naddafi K, ...
  • Ghorbani A, Jafarian Y, Maghsoudi MS. Estimating shear wave velocity ...
  • Bahadori H, Momeni M. ANN for correlation between shear wave ...
  • Ataee O, Hafezi Moghaddas N, Lashkari Pour GR, Abbari Nooghabi ...
  • Kayadelen C. Soil liquefaction modeling by genetic expression programming and ...
  • Jalalifar H, Mojedifar S, Sahebi A, Nezamabadi-Pour H. Application of ...
  • Soil ACD-o, Sampling RSDo, Investigations RFTfS, editors. Standard test method ...
  • Testing ASf, Materials. Standard test method for particle-size analysis of ...
  • Standard A. D۲۲۱۶-۱۰: Standard Test Methods for Laboratory Determination of ...
  • Soil ACD-o, Rock. Standard test methods for liquid limit, plastic ...
  • نمایش کامل مراجع