Option pricing in high volatile illiquid market
Publish Year: 1403
نوع سند: مقاله ژورنالی
زبان: English
View: 75
This Paper With 12 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JMMF-4-1_010
تاریخ نمایه سازی: 10 مرداد 1403
Abstract:
This study compares the performance of the classic Black-Scholes model and the generalized Liu and Young model in pricing European options and calculating derivatives sensitivities in high volatile illiquid markets. The generalized Liu and Young model is a more accurate option pricing model that incorporates both the efficacy of the number of invested stocks and the abnormal increase of volatility during a financial crisis for hedging pur- poses and the financial risk management. To evaluate the performance of these models, we use numerical methods such as finite difference schemes and Monte-Carlo simulation with antithetic variate variance reduction tech- nique. Our results show that the generalized Liu and Young model outper- forms the classic Black-Scholes model in terms of accuracy, especially in high volatile illiquid markets. Additionally, we find that the finite differ- ence schemes are more efficient and faster than the Monte-Carlo simulation in this model. Based on these findings, we recommend using the general- ized Liu and Young model with finite difference schemes for the European options and Greeks valuing in high volatile illiquid markets.
Keywords:
Black-Scholes equation , Finite difference scheme , Greeks , Monte-Carlo simulation , Nonlinear partial differential equation
Authors
Sima Mashayekhi
Department of Mathematics, Faculty of Science, Arak University, Arak ۳۸۱۵۶-۸-۸۳۴۹, Iran.
Seyed Nourollah Mousavi
Department of Mathematics, Faculty of Science, Arak University, Arak ۳۸۱۵۶-۸-۸۳۴۹, Iran.
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :