Option pricing in high volatile illiquid market

Publish Year: 1403
نوع سند: مقاله ژورنالی
زبان: English
View: 75

This Paper With 12 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_JMMF-4-1_010

تاریخ نمایه سازی: 10 مرداد 1403

Abstract:

This study compares the performance of the classic Black-Scholes model and the generalized Liu and Young model in pricing European options and calculating derivatives sensitivities in high volatile illiquid markets. The generalized Liu and Young model is a more accurate option pricing model that incorporates both the efficacy of the number of invested stocks and the abnormal increase of volatility during a financial crisis for hedging pur- poses and the financial risk management. To evaluate the performance of these models, we use numerical methods such as finite difference schemes and Monte-Carlo simulation with antithetic variate variance reduction tech- nique. Our results show that the generalized Liu and Young model outper- forms the classic Black-Scholes model in terms of accuracy, especially in high volatile illiquid markets. Additionally, we find that the finite differ- ence schemes are more efficient and faster than the Monte-Carlo simulation in this model. Based on these findings, we recommend using the general- ized Liu and Young model with finite difference schemes for the European options and Greeks valuing in high volatile illiquid markets.

Keywords:

Authors

Sima Mashayekhi

Department of Mathematics, Faculty of Science, Arak University, Arak ۳۸۱۵۶-۸-۸۳۴۹, Iran.

Seyed Nourollah Mousavi

Department of Mathematics, Faculty of Science, Arak University, Arak ۳۸۱۵۶-۸-۸۳۴۹, Iran.

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • D Bakstein and S. Howison, A non-arbitrage liquidity model with ...
  • G. Barles and H.M. Soner, Option pricing with transaction costs ...
  • F. Black and M. Scholes, The pricing of options and ...
  • Z. Buckov ˇ a, M. Ehrhardt, M. G ´ unther ...
  • R. Company, E. Navarro, J. R. Pintos, and E. Ponsoda, ...
  • G. Dibeh, and H. M. Harmanani, Option pricing during post-crash ...
  • B. During, C. Hendricks and J. Miles ¨ , Sparse ...
  • M. Ehrhardt, Nonlinear models in mathematical finance: new research trends ...
  • Y. El-Khatib and A. Hatemi-J, Option pricing with illiquidity during ...
  • R. Frey and P. Pierre, Risk management for derivatives in ...
  • M. N. Koleva,Positivity preserving numerical method for non-linear Black-Scholes models, ...
  • H. E. Leland, Option pricing and replication with transactions costs, ...
  • D. C. Lesmana and S. Wang, An upwind finite difference ...
  • H. Liu and J. Yong, Option pricing with an illiquid ...
  • S. Mashayekhi and J. Hugger, Finite difference schemes for a ...
  • Alternating Direction Explicit Method for a Nonlinear Model in Finance [مقاله ژورنالی]
  • R.C Merton,Theory of rational option pricing, The Bell Journal of ...
  • D. Sornette and F. Cuypers, Why stock markets crash: Critical ...
  • نمایش کامل مراجع