Biomechanical Comparison of Novel Adaptive Swing-Phase Control Mechanical Knee Prostheses with ۳R۶۰ and ۳R۱۵ in Trans-Femoral Amputees

Publish Year: 1403
نوع سند: مقاله ژورنالی
زبان: English
View: 50

This Paper With 10 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_JBPE-14-4_008

تاریخ نمایه سازی: 14 مرداد 1403

Abstract:

Background: The knee joint must adapt to the changes in walking speed to stabilize the stance phase and provide fluency in the swing phase.Objective: This study aimed to report a comparison of the gait patterns of transfemoral amputees using a novel mechanical prosthetic knee that can adapt automatically to different walking speeds with ۳R۶۰ and ۳R۱۵ knee prostheses.Material and Methods: In this experimental study, biomechanical data were collected from six unilateral trans-femoral amputees walking with three knee prostheses. Gait data were gathered at slow, normal, and fast walking speeds across a ۷-meter walkway using the Vicon motion system.Results: The results revealed a significant difference in knee angular velocity during the swing phase between prosthetic knees across three walking speeds (P-value=۰.۰۰۲). Prosthetic knee flexion decreased significantly by increasing walking speed for the novel mechanical auto-adaptive prosthetic knee (P-value<۰.۰۰۱). A lower value of hip power during early swing was considered when amputees walked with novel knee prosthesis (P-value<۰.۰۰). The intact leg ankle plantar flexion angle or vaulting did not significantly change while walking speed increased in the novel knee prostheses compared to walking with the ۳R۶۰ and ۳R۱۵ knee prostheses (P-value=۰.۰۰۲ and P-value<۰.۰۶, respectively). Conclusion: Based on the results, a novel mechanical auto-adaptive knee prosthesis has advantages compared to the other conventional designs for unilateral trans-femoral amputees walking at different speeds.

Authors

Roghaye Sheykhi-Dolagh

Rehabilitation Research Center, Department of Orthotics and Prosthetics, School of Rehabilitation Sciences, Iran University of Medical Sciences, Tehran, Iran

Hassan Saeedi

Rehabilitation Research Center, Department of Orthotics and Prosthetics, School of Rehabilitation Sciences, Iran University of Medical Sciences, Tehran, Iran

Zahra Safaeepour

Department of Human Performance and Health, University of South Carolina Upstate, Spartanburg, South Carolina, USA

Behnam Hajiaghaee

Rehabilitation Research Center, Department of Orthotics and Prosthetics, School of Rehabilitation Sciences, Iran University of Medical Sciences, Tehran, Iran

Seyed Hassan Saneii

Rehabilitation Research Center, Department of Rehabilitation Basic Sciences, School of Rehabilitation Sciences, Iran University of Medical Sciences, Tehran, Iran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • Ziegler-Graham K, MacKenzie EJ, Ephraim PL, Travison TG, Brookmeyer R. ...
  • Renzi R, Unwin N, Jubelirer R, Haag L. An international ...
  • Hafner BJ, Willingham LL, Buell NC, Allyn KJ, Smith DG. ...
  • Herr H, Wilkenfeld A. User-adaptive control of a magnetorheological prosthetic ...
  • Stinus H. Biomechanics and evaluation of the microprocessor-controlled C-Leg exoprosthesis ...
  • Baimyshev A, Lawson B, Goldfarb M. Design and preliminary assessment ...
  • Doke J, Donelan JM, Kuo AD. Mechanics and energetics of ...
  • Winter DA. Biomechanics and motor control of human gait: normal, ...
  • Hahn A, Lang M, Stuckart C. Analysis of clinically important ...
  • Murthy Arelekatti V, Winter AG. Design and preliminary field validation ...
  • Segal AD, Orendurff MS, Klute GK, McDowell ML, Pecoraro JA, ...
  • Prinsen EC, Nederhand MJ, Sveinsdóttir HS, Prins MR, et al. ...
  • Czerniecki JM. Rehabilitation in limb deficiency. ۱. Gait and motion ...
  • Lemaire ED, Fisher FR. Osteoarthritis and elderly amputee gait. Arch ...
  • Radin EL, Paul IL. Response of joints to impact loading. ...
  • Hurwitz DE, Sumner DR, Block JA. Bone density, dynamic joint ...
  • Sup F, Bohara A, Goldfarb M. Design and Control of ...
  • Lambrecht BG, Kazerooni H. Design of a semi-active knee prosthesis. ...
  • Cao W, Yu H, Chen W, Meng Q, Chen C. ...
  • Kent JA, Arelekatti VNM, Petelina NT, Johnson WB, Brinkmann JT, ...
  • Lenzi T, Hargrove LJ, Sensinger JW. Minimum jerk swing control ...
  • Mendez J, Hood S, Gunnel A, Lenzi T. Powered knee ...
  • Awad M, Sek Tee K, Dehghani A, Moser D, Zahedi ...
  • Smidt GL. Hip motion and related factors in walking. Phys ...
  • Hale S. The effect of walking speed on the joint ...
  • Yamazaki N, Ohta K, Ohgi Y. Mechanical energy transfer by ...
  • Torki AA, Taher MF, Ahmed AS. Design and implementation of ...
  • Geil MD, Safaeepour Z, Giavedoni B, Coulter CP. Walking kinematics ...
  • Hansen AH, Childress DS, Miff SC, Gard SA, Mesplay KP. ...
  • Johansson JL, Sherrill DM, Riley PO, Bonato P, Herr H. ...
  • Lenzi T, Hargrove L, Sensinger J. Speed-adaptation mechanism: Robotic prostheses ...
  • Yokogushi K, Narita H, Uchiyama E, Chiba S, Nosaka T, ...
  • Arelekatti VNM. Design of low-cost, fully passive prosthetic knee for ...
  • Kirker S, Keymer S, Talbot J, Lachmann S. An assessment ...
  • Fey NP, Simon AM, Young AJ, Hargrove LJ. Controlling Knee ...
  • نمایش کامل مراجع