سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

شناسایی پهنه های مستعد زمین لغزش با استفاده از شبکه عصبی مصنوعی پرسپترون چند لایه (MLP) مطالعه موردی: شهرستان خلخال

Publish Year: 1402
Type: Journal paper
Language: Persian
View: 97

This Paper With 24 Page And PDF Format Ready To Download

این Paper در بخشهای موضوعی زیر دسته بندی شده است:

Export:

Link to this Paper:

Document National Code:

JR_RSGIES-3-9_004

Index date: 18 August 2024

شناسایی پهنه های مستعد زمین لغزش با استفاده از شبکه عصبی مصنوعی پرسپترون چند لایه (MLP) مطالعه موردی: شهرستان خلخال abstract

یکی از مخاطراتی که زیر ساخت های موجود در مناطق مختلف را تهدید می کند، پدیده زمین لغزش است. مطالعه حاضر سعی در شناسایی پهنه های مستعد این پدیده طبیعی در شهرستان خلخال دارد، که با استفاده از روش شبکه عصبی انجام گرفته است. برای این منظور ۹ عامل تاثیر گذار بر لغزش شناسایی و تهیه شدند، لایه لغزش های اتفاق افتاده، از عکس های هوایی و تصاویر ماهواره ای و بازدید های میدانی بدست آمده و با استفاده ازنقاط غیر لغزشی در سطح منطقه، داده های آموزش شبکه عصبی پرسپترون چند لایه را ایجاد کردند. این داده ها به منظور مدلسازی شبکه عصبی، پس از آماده سازی اولیه در محیط نرم افزار ARC GIS ۱۰.۵ به نرم افزار MATLAB ۲۰۱۶ منتقل شده و با استفاده از کد نویسی شبکه عصبی MLP آموزش دیدند تا در مورد داده هایی که با آنها برخورد نداشته اند، پیش بینی انجام دهند. ساختار شبکه عصبی طراحی شده از بین شبکه های بسیاری که ایجاد و آزمایش شدند، ۱-۱۲-۹ انتخاب شد، که ۹ ورودی به تعداد معیار های تاثیرگذار، ۱۲ نورون در لایه میانی و یک نورون و لایه برای خروجی شبکه بدست آمد. نتایج نمودار اعتبار سنجی مدل شبکه عصبی (ROC) نشان دهنده دقت بالای ۹۵ درصدی مدل ایجاد شده در پیش بینی پیکسل های لغزشی است. بر طبق نتایج حاصله ۵۷/۰، ۱۱/۰، ۰۷/۰ ، ۰۶/۰ و ۱۷/۰ درصد از منطقه مورد مطالعه به ترتیب در کلاس های بسیار زیاد، زیاد، متوسط، کم و خیلی کم قرار گرفتند.

شناسایی پهنه های مستعد زمین لغزش با استفاده از شبکه عصبی مصنوعی پرسپترون چند لایه (MLP) مطالعه موردی: شهرستان خلخال Keywords:

شناسایی پهنه های مستعد زمین لغزش با استفاده از شبکه عصبی مصنوعی پرسپترون چند لایه (MLP) مطالعه موردی: شهرستان خلخال authors

خلیل ولیزاده کامران

گروه سنجش از دورو GIS دانشگاه تبریز

فاطمه عدیمی

دانشگاه تبریز