Estimation of Soil Loss using Remote Sensing Data in a Regional Tropical Humid Catchment Area
Publish place: Civil Engineering Journal، Vol: 10، Issue: 7
Publish Year: 1403
نوع سند: مقاله ژورنالی
زبان: English
View: 41
This Paper With 20 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_CEJ-10-7_014
تاریخ نمایه سازی: 30 مرداد 1403
Abstract:
Soil erosion has been and continue to be a major threat to environmental degradation especially in the developing countries. Accurate estimation of soil loss will provide reliable information in the management and mitigation solutions to soil erosion. In this study, the soil loss in an erosion prone Anambra State of South East region of Nigeria was estimated. Due to the complex nature of the catchment characteristics of Anambra State, soil loss cannot be estimated precisely by mere application of conventional soil erosion model. Hence a site-specific methodology was developed and applied. Revised Universal Soil Loss Equation (RUSLE) was integrated with the Geographic Information System (GIS) of the environment using remote sensing to build the model. ۴۰-years rainfall data was collated from the Nigeria Meteorological Agency and analyzed. The various parameter of RUSLE which includes: Rainfall Erosivity (R), Soil Erodibility (K), Topography (LS), Land Use and Land Cover (C), and Erosion Control practices (P) were developed and imposed into ArcGIS ۱۰.۶ to estimate the amount of annual soil loss in the area. The result indicated that about ۲۷.۵۸km۲ (۰.۵۹%) of the study area have very low erosion rate of ۰ – ۵ t ha۱year-۱ , while the rates of erosion in ۱۳۱۱.۵۲km۲ (۲۸.۰۱%), ۵۳۸.۵۹km۲ (۱۱.۵۰%), ۱۶۴۹.۰۸km۲ (۳۵.۲۲%), ۹۵۹.۰۹km۲ (۲۰.۴۸%), and ۱۹۶.۷۶km۲ (۴.۲۰%) of the study area are ۵–۱۰, ۱۰–۱۵, ۱۵–۲۵, ۲۵–۵۰ and >۵۰ t ha-۱year-۱respectively. This knowledge will help decision makers in managing the land degradation problems in Anambra State of Nigeria. Doi: ۱۰.۲۸۹۹۱/CEJ-۲۰۲۴-۰۱۰-۰۷-۰۱۴ Full Text: PDF
Keywords:
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :