An operational collocation based on the Bell polynomials for solving high order Volterra integro-differential equations
Publish place: Journal of Mahani Mathematical Research، Vol: 13، Issue: 2
Publish Year: 1403
نوع سند: مقاله ژورنالی
زبان: English
View: 58
This Paper With 19 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_KJMMRC-13-2_009
تاریخ نمایه سازی: 30 مرداد 1403
Abstract:
In this paper, an operational matrix method based on the Bell polynomials has been presented to find approximate solutions of high-order Volterra integro-differential equations. This method uses a simple computational manner to obtain a quite acceptable approximate solution. The main characteristic behind this method lies in the fact that on the one hand, the problem will be reduced to a system of algebraic equations and on the other hand, the efficiency and accuracy of the Bell polynomials for solving these equations are acceptable. The convergence analysis of this method will be shown by preparing some theorems. Moreover, we will obtain an estimation of the error bound for this algorithm. Finally, some examples are presented to illustrate the applicability, efficiency and accuracy of this scheme in comparison with some other well-known methods such as Legendre, Bernoulli, Taylor and Bessel polynomial algorithms
Keywords:
Keywords: Volterra Integro-Differential Equations , Bell Polynomials , Operational matrix , Error Estimation
Authors
Najmeh Kasaei
Department of Mathematics, Shiraz University of Technology, Shiraz, Iran
Esmail Hesameddini
Department of Mathematics, Shiraz University of Technology, Shiraz, Iran
Mohammad Nabati
Department of Basic Sciences, Abadan Faculty of Petroleum Engineering, Petroleum University of Technology, Abadan, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :