Automated Design Process of a Fixed Wing UAV Maximizing Endurance

Publish Year: 1403
نوع سند: مقاله ژورنالی
زبان: English
View: 14

This Paper With 14 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

این Paper در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_JAFM-17-11_002

تاریخ نمایه سازی: 12 شهریور 1403

Abstract:

Unmanned aerial vehicle (UAV) design necessitates significant effort in prototyping, testing, and design iterations. To reduce design time and improve wing performance, an automated design and optimization framework is proposed utilizing open-source software, including OpenVSP: VSPAERO & Parasite Drag Tool, XFOIL, and Python. This study presents a preliminary UAV wing design methodology, emphasizing weight estimation, drag analysis, stall prediction, and endurance optimization. The maximum takeoff weight of the UAV was calculated after estimating the empty weight using a linear regression from data from ۲۰ existing similar UAVs. The wing and engine sizing were determined using the matching plot technique. A solver with low-fidelity models, combining the Vortex Lattice Method (VLM) and analytical expressions, was used to predict the drag coefficient and maximum lift coefficient of the designed wing. An optimization process using a genetic algorithm was applied to maximize endurance while satisfying requirements such as rate of climb, stall, and maximum speeds. The optimized wing was analyzed with computational fluid dynamics (CFD), and its aerodynamic characteristics were compared with those obtained using VLM and the suggested aerodynamic solver. According to the CFD results, the proposed aerodynamic solver estimated the drag coefficient at zero angle of attack with an error of ۱۷.۲% compared to ۶۳.۱% using the VLM classic method. The error on the maximum lift coefficient estimation was limited to ۵.۳%. In terms of optimization, the framework showed an increase in the endurance ratio of up to ۲% compared to the Artificial Neural Network method coupled with XFLR۵. The primary advantage of the suggested framework is the utilization of open-source software, giving a cost-effective and accessible solution for small and medium-sized startups to design and optimize UAVs to achieve mission objectives.

Keywords:

UAVs design Optimization framework OpenVSP XFOIL Genetic algorithm ANN , XFLR۵

Authors

M. Sahraoui

Laboratory of Fluid Mechanics, Ecole Militaire Polytechnique, Bordj El Bahri, ۱۶۰۴۶, Algiers, Algeria

A. Boutemedjet

Laboratory of Fluid Mechanics, Ecole Militaire Polytechnique, Bordj El Bahri, ۱۶۰۴۶, Algiers, Algeria

M. Mekadem

Laboratory of Fluid Mechanics, Ecole Militaire Polytechnique, Bordj El Bahri, ۱۶۰۴۶, Algiers, Algeria

D. Scholz

Aircraft Design and Systems Group (AERO), Hamburg University of Applied Sciences, Hamburg, ۲۰۰۹۹, Germany

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • OpenVSP. (۲۰۲۳, July ۲۴). Open Vehicle Sketch Pad (Version ۳.۲۵.۰). ...
  • Air Force Technology | Air Defence News & Views Updated ...
  • Ansys CFX. (۲۰۲۳, October ۳). Industry-Leading CFD Software. https://www.ansys.com/products/fluids/ansys-cf ...
  • Ansys Fluent. (۲۰۲۳, October ۳). Fluid Simulation Software. https://www.ansys.com/products/fluids/ansys-fluen ...
  • Anderson, J. D. (۲۰۱۶). Introduction to flight (Eighth edition). McGraw-Hill ...
  • Anılır, B., & Kurtuluş, D. F. (۲۰۲۳). Unsteady aerodynamic performance ...
  • Azabi, Y., Savvaris, A., & Kipouros, T. (۲۰۱۹). Artificial intelligence ...
  • Bahrami, A., Hoseinzadeh, S., Heyns, P. S., & Mirhosseini, S. ...
  • Benaouali, A., & Kachel, S. (۲۰۱۹). Multidisciplinary design optimization of ...
  • Blasius, H. (۱۹۵۰). The boundary layers in fluids with little ...
  • Boutemedjet, A., Samardžić, M., Rebhi, L., Rajić, Z., & Mouada, ...
  • Cheeseman, I. (۱۹۷۶). Fluid-Dynamic Drag: Practical Information on Aerodynamic Drag ...
  • Covert, E. E. (۱۹۸۵). Progress in astronautics and aeronautics: Thrust ...
  • dos Santos, C. R., & Marques, F. D. (۲۰۱۸). Lift ...
  • Du, X., He, P., & Martins, J. R. R. A. ...
  • Elham, A., & Van Tooren, M. J. L. (۲۰۱۴). Winglet ...
  • Falkner, V. M. (۱۹۴۳). The calculation of aerodynamic loading on ...
  • Gudmundsson, S. (۲۰۱۳). General aviation aircraft design: Applied Methods and ...
  • Haryanto, I., Utomo, T. S., Sinaga, N., Rosalia, C. A., ...
  • Hedman, S. G. (۱۹۶۶). Vortex lattice method for calculation of ...
  • Hoak, D.E., and Carlson, J. (۱۹۷۸). USAF Stability and Control ...
  • Hoseinzadeh, S., Bahrami, A., Mirhosseini, S. M., Sohani, A., & ...
  • Hoseinzadeh, S., Sohani, A., & Heyns, S. (۲۰۲۱). Comprehensive analysis ...
  • Hoseinzadeh, S., & Stephan Heyns, P. (۲۰۲۲). Development of a ...
  • Hutagalung, M. R. A., Latif, A. A., & Israr, H. ...
  • Kapsalis, S., Panagiotou, P., & Yakinthos, K. (۲۰۲۱). CFD-aided optimization ...
  • Katz, J., & Plotkin, A. (۲۰۰۱). Low-speed aerodynamics. (Vol. ۱۳), ...
  • Masood, K., & Wei, Z. (۲۰۱۸). Robust multidisciplinary optimization for ...
  • Ostadhossein, R., & Hoseinzadeh, S. (۲۰۲۴). Developing computational methods of ...
  • Pritchard, P. J., & Mitchell, J. W. (۲۰۱۶). Fox and ...
  • Sadraey, M. H. (۲۰۱۳). Aircraft design: A systems engineering approach. ...
  • Schlichting, H., & Kestin, J. (۱۹۶۱). Boundary layer theory (Vol. ...
  • Singh, D. K., Jain, A., & Paul, A. R. (۲۰۲۱). ...
  • Sun, G., & Wang, S. (۲۰۱۹). A review of the ...
  • Traub, L. W. (۲۰۱۳). Aerodynamic impact of aspect ratio at ...
  • نمایش کامل مراجع