سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

Novel Use of PRF Sound for Radar Emitter Recognition: A Transfer Learning-Infused DCNN Study

Publish Year: 1403
Type: Journal paper
Language: Persian
View: 74

This Paper With 18 Page And PDF Format Ready To Download

این Paper در بخشهای موضوعی زیر دسته بندی شده است:

Export:

Link to this Paper:

Document National Code:

JR_IJMT-11-2_009

Index date: 7 September 2024

Novel Use of PRF Sound for Radar Emitter Recognition: A Transfer Learning-Infused DCNN Study abstract

In contemporary electronic warfare, the accurate and prompt identification of radar emitters is crucial, especially for the efficiency of electronic countermeasures. This study presents a new method that utilizes pulse repetition frequency (PRF) sound to identify radar emissions in response to the growing intricacy of modern radar systems. This study employs six transfer learning-based deep convolutional neural networks (DCNNs) to extract features. It provides a comprehensive examination of classification performance and computational efficiency across several DCNN designs. The VGG۱۶ and ResNet۵۰V۲ models achieved recognition accuracies of ۹۵.۳۸% and ۹۶.۹۲%, respectively, with training times of ۸.۰۱ seconds and ۲۱.۲۵ seconds. This study also examines the trade-offs between accuracy and computational requirements, offering a strategic understanding of the subtle dynamics of radar emitter recognition. In situations when computational complexity is not the primary concern, ResNet۵۰V۲ is the most suitable choice. Alternatively, VGG۱۶ is recommended due to its ability to compromise high accuracy and lower computing demands. This study establishes a standard for future research endeavors, which encompass enhancing the capabilities of models at a larger scale, optimizing current architectures without sacrificing accuracy, and progressing towards models that can autonomously adapt to hardware limitations. The results provide a thorough manual for choosing DCNN models that can effectively detect six different input types in various computational settings. This paves the way for creating advanced models that strike a harmonic balance between efficiency and accuracy.

Novel Use of PRF Sound for Radar Emitter Recognition: A Transfer Learning-Infused DCNN Study Keywords:

Novel Use of PRF Sound for Radar Emitter Recognition: A Transfer Learning-Infused DCNN Study authors

سید مجید حسنی اژدری

گروه آموزشی جنگ الکترونیک، دانشکده مهندسی برق، دانشگاه علوم دریایی امام خمینی (ره)، نوشهر، ایران

محمد خویشه

گروه الکترونیک، دانشکده مهندسی برق، دانشگاه علوم دریایی امام خمینی (ره)، نوشهر ایران

فلاح محمدزاده

گروه مخابرات، دانشکده مهندسی برق، دانشگاه علوم دریایی امام خمینی (ره)، نوشهر ایران

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
Li, H., W. Jing, and Y. Bai. Radar emitter recognition ...
Long, T., et al., High resolution radar real-time signal and ...
Huang, G., et al., Specific emitter identification based on nonlinear ...
Ye, H., Z. Liu, and W. Jiang, Comparison of unintentional ...
Dudczyk, J. and A. Kawalec, Identification of emitter sources in ...
Pérez, D., et al. Low-cost radar-based target identification prototype using ...
LeCun, Y., Y. Bengio, and G. Hinton, Deep learning. nature, ...
Li, P., Research on radar signal recognition based on automatic ...
Huang, G.-B., Y.-Q. Chen, and H.A. Babri, Classification ability of ...
Sun, W., L. Wang, and S. Sun, Radar emitter individual ...
Bufler, T.D. and R.M. Narayanan, Radar classification of indoor targets ...
Li, L., H.-B. Ji, and L. Jiang, Quadratic time–frequency analysis ...
Sun, X., et al., Extreme learning machine for multi-label classification. ...
Wang, Y., F. Cao, and Y. Yuan, A study on ...
Huang, G.-B., X. Ding, and H. Zhou, Optimization method based ...
Chen, W., et al., Radar emitter classification for large data ...
Yang, Z., et al., Hybrid radar emitter recognition based on ...
Schmidhuber, J., Deep learning in neural networks: An overview. Neural ...
Zhu, M., Z. Feng, and X. Zhou, A novel data-driven ...
Chen, Y., Z.-L. Wu, and Y.-K. Lei, Individual identification of ...
Xiao, W., H. Wu, and C. Yang. Support vector machine ...
Cao, R., et al., Radar emitter identification with bispectrum and ...
Zhao, S., et al., Mutation grey wolf elite PSO balanced ...
Zhang, M., et al., Neural networks for radar waveform recognition. ...
Wang, X., et al. Radar emitter recognition based on the ...
Wan, J., X. Yu, and Q. Guo, LPI radar waveform ...
Shi, Y., et al., Specific radar emitter identification based on ...
Liu, Z.-M., Multi-feature fusion for specific emitter identification via deep ...
Xiao, Z. and Z. Yan, Radar emitter identification based on ...
Huang, G.-B., D.H. Wang, and Y. Lan, Extreme learning machines: ...
Zhou, Z., et al., Color difference classification of solid color ...
Chen, H., et al., An enhanced Bacterial Foraging Optimization and ...
Tian, Q., et al., Real-time human cross-race aging-related face appearance ...
Haut, J.M., et al., Fast dimensionality reduction and classification of ...
Ma, H.-J. and G.-H. Yang, Adaptive fault tolerant control of ...
Ma, H.-J. and L.-x. Xu, Decentralized adaptive fault-tolerant control for ...
Zhao, G., et al. On improving the conditioning of extreme ...
Wiley, R., ELINT: The interception and analysis of radar signals. ...
O'Shea, K. and R. Nash, An introduction to convolutional neural ...
LeCun, Y., LeNet-۵, convolutional neural networks. URL: http://yann. lecun. com/exdb/lenet, ...
Krizhevsky, A., I. Sutskever, and G.E. Hinton, Imagenet classification with ...
Zeiler, M.D. and R. Fergus. Visualizing and understanding convolutional networks. ...
Szegedy, C., et al. Going deeper with convolutions. in Proceedings ...
Simonyan, K. and A. Zisserman, Very deep convolutional networks for ...
Szegedy, C., et al. Inception-v۴, inception-resnet and the impact of ...
Wu, X., et al. An xception based convolutional neural network ...
de Zarzà, I., J. de Curtò, and C.T. Calafate, Detection ...
Yang, H., et al., A novel method for peanut variety ...
Raje, N.R. and A. Jadhav. Automated Diagnosis of Pneumonia through ...
Nandhini, S. and K. Ashokkumar, An automatic plant leaf disease ...
Maheta, S. and Manisha, Deep Learning-Based Cancelable Biometric Recognition Using ...
Huang, G.-B., D.H. Wang, and Y. Lan, Extreme learning machines: ...
Bartlett, P., The sample complexity of pattern classification with ۸۴۸ ...
Niu, Z., et al., The research on ۲۲۰GHz multicarrier high-speed ...
Wang, J., et al., A review on extreme learning machine. ...
Tang, L., et al., Biological stability of water-based cutting fluids: ...
Zhu, S., et al., Synchronous measuring of triptolide changes in ...
Liu, G., et al., Antibacterial activity and mechanism of bifidocin ...
Li, Y., X. Lin, and J. Liu, An Improved Gray ...
Dai, S., D. Niu, and Y. Li, Daily peak load ...
Chicco, D. and G. Jurman, The advantages of the Matthews ...
Xie, X., et al., A simple Monte Carlo method for ...
Wang, J., et al., Control of Time Delay Force Feedback ...
Jia, D., et al., Lubrication-enhanced mechanisms of titanium alloy grinding ...
نمایش کامل مراجع