A numerical computation for solving delay and neutral differential equations based on a new modification to the Legendre wavelet method
Publish Year: 1403
نوع سند: مقاله ژورنالی
زبان: English
View: 38
This Paper With 38 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJNAO-14-30_010
تاریخ نمایه سازی: 17 شهریور 1403
Abstract:
The goal of this study is to use our suggested generalized Legendre wavelet method to solve delay and equations of neutral differential form with pro-portionate delays of different orders. Delay differential equations have some application in the mathematical and physical modelling of real-world prob-lems such as human body control and multibody control systems, electric circuits, dynamical behavior of a system in fluid mechanics, chemical en-gineering, infectious diseases, bacteriophage infection’s spread, population dynamics, epidemiology, physiology, immunology, and neural networks. The use of orthonormal polynomials is the key advantage of this method because it reduces computational cost and runtime. Some examples are provided to demonstrate the effectiveness and accuracy of the suggested strategy. The method’s accuracy is reported in terms of absolute errors. The numerical findings are compared to other numerical approaches in the literature, particularly the regular Legendre wavelets method, and show that the current method is quite effective in order to solve such sorts of differential equations.
Keywords:
Generalized Legendre wavelets , orthonormal polynomials delay differential equations , neutral differential equations , Accuracy
Authors
N.M. El-Shazly
Mathematics and Computer Science Department, Faculty of Science, Menoufia University, Menoufia, Egypt.
M.A Ramadan
Mathematics and Computer Science Department, Faculty of Science, Menoufia University, Menoufia, Egypt.
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :