Estimation of the Elastic Properties of Important Calcium Silicate Hydrates in Nano Scale - a Molecular Dynamics Approach

Publish Year: 1398
نوع سند: مقاله ژورنالی
زبان: English
View: 48

This Paper With 19 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_CIVLJ-7-4_002

تاریخ نمایه سازی: 23 شهریور 1403

Abstract:

Approximately, ۵۰ to ۷۰ percent of hydration products in hydrated cement paste are polymorphisms of C-S-H gel. It is highly influential in the final properties of hardened cement paste. Distinguishing C-S-H nano-structure significantly leads to determine its macro scale ensemble properties. In this paper, a nono-scale modeling is employed. In order to carry it out, the major C-S-H compounds, with a vast range ratios of Ca/Si from ۰.۵ to ۳ were selected and applied in different simulations. These materials included tobermorite ۹Å, tobermorite ۱۱Å, tobermorite ۱۴Å, clinotobermorite, jennite, afwillite, okenite, jaffeite, foshagite, and wollastonite. Furthermore, the molecular dynamics method was employed to evaluate some consequential mechanical properties such as bulk modulus, shear modulus, Young's modulus and poisson ratio. Five different force fields (COMPASS, COMPASS II, ClayFF, INTERFACE and Universal) were applied and compared with each other to be able to measure the mechanical properties of these compounds. Lastly, the properties of two types of C-S-H with high and low density were computed using Mori-Tanaka method. The main aim of this paper is to distinguish the most similar natural C-S-H material to C-S-H from cement hydration and finding appropriate force filed.

Authors

Amir Tarighat

Department of Civil Engineering, Shahid Rajaee Teacher Training University, Tehran, Iran

Davoud Tavakoli

Department of Civil Engineering, Shahrekord University, Shahrekord, Iran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • Tavakoli, D., Hashempour, M., & Heidari, A. (۲۰۱۸). Use of ...
  • Tavakoli, D., Heidari, A., & Pilehrood, S. H. (۲۰۱۴). Properties ...
  • Taylor, H.F., Cement Chemistry. ۲ ed. ۱۹۹۷, London: Thomas Telford ...
  • Tarighat, A., Zehtab, B., & Tavakoli, D. (۲۰۱۶). An introductory ...
  • Papatzani, S., Paine, K., & Calabria-Holley, J. (۲۰۱۵). A comprehensive ...
  • Kar, A., Ray, I., Unnikrishnan, A., & Davalos, J. F. ...
  • Richardson, I. G. (۲۰۰۸). The calcium silicate hydrates. Cement and ...
  • Manzano, H., Dolado.J.S, Guerrero.A., & Ayuela.A. (۲۰۰۷) Mechanical properties of ...
  • Selvam, R.P., Murray, S.J., Jankiram Subramani, V., & Hall, K.D. ...
  • Bankura, A., & Chandra, A. (۲۰۰۵). Hydration and translocation of ...
  • Zehtab, B., & Tarighat, A. (۲۰۱۶). Diffusion study for chloride ...
  • Zehtab, B., & Tarighat, A. (۲۰۱۷). Molecular dynamics simulation to ...
  • Tavakoli, D., Tarighat, A., & Beheshtian, J. (۲۰۱۷). Nanoscale investigation ...
  • Tarighat, A., & Tavakoli, D. (۲۰۱۶). Estimation of mechanical properties ...
  • Hughes, J. J., & Trtik, P. (۲۰۰۴). Micro-mechanical properties of ...
  • Constantinides, G., & Ulm, F. J. (۲۰۰۷). The nanogranular nature ...
  • Zhu, W., Hughes, J. J., Bicanic, N., & Pearce, C. ...
  • Vandamme, M., Ulm, F. J., & Fonollosa, P. (۲۰۱۰). Nanogranular ...
  • Oh, J. E., Clark, S. M., Wenk, H. R., & ...
  • Faucon, P., Delaye, J.M., & Virlet, J. (۱۹۹۶) Molecular Dynamics ...
  • Janakiram Subramani, V., Murray, S., Panneer Selvam, R., & Hall, ...
  • Murray, S.J., Jankiram Subramani, V., Selvam, R.P., & Hall, K.D. ...
  • Pellenq, R. M., Lequeux, N., & Van Damme, H. (۲۰۰۸). ...
  • Shahsavari, R., Pellenq, R.J.M., & Ulm, F.J. (۲۰۱۱) Empirical force ...
  • Qomi, M.J.A., Krakowiak, K.J., Bauchy, M., Stewart, K.L., Shahsavari, R., ...
  • Tavakoli, D., & Tarighat, A. (۲۰۱۶). Molecular dynamics study on ...
  • Al-Ostaz, A., W. Wu, AH-D. Cheng, and C. R. Song. ...
  • Hajilar, S., & Shafei, B. (۲۰۱۵) Nano-scale investigation of elastic ...
  • Bullard J.W., Virtual Cement and Concrete Testing Laboratory (VCCTL) user ...
  • van Breugel K., Numerical simulation of hydration and microstructural development ...
  • Koenders E.A.B. and van Breugel K., Numerical modeling of autogenous ...
  • Bishnoi Sh., Vector Modelling of Hydrating Cement Microstructure and Kinetics.: ...
  • Maekawa K., Chaube R.P., and Kishi T., Modelling of Concrete ...
  • Koenders E.A.B., Schlangen E., and van Breugel K., Multi-scale modeling: ...
  • Zhang M., Multiscale Lattice Boltzmann-Finite Element Modelling of Transport Properties ...
  • Hou, D. (۲۰۱۴). Molecular simulation on the calcium silicate hydrate ...
  • Plassard, C., Lesniewska, E., Pochard, I., & Nonat, A. (۲۰۰۴). ...
  • Richardson, I.G. and G.W. Groves, Models for the composition and ...
  • Richardson, I.G., The nature of the hydration products in hardened ...
  • Manzano Moro, H. (۲۰۱۴). Atomistic simulation studies of the cement ...
  • Merlino, S., Bonaccorsi, E., & Armbruster, T. (۲۰۰۱). The real ...
  • Richardson, I. G. (۲۰۰۴). Tobermorite/jennite-and tobermorite/calcium hydroxide-based models for the ...
  • Merlino, S., Bonaccorsi, E., & Armbruster, T. (۱۹۹۹). Tobermorites: Their ...
  • Hamid, S.A., The crystal structure of ۱۱Å natural tobermorite Ca۲.۲۵[Si۳O۷.۵(OH)۱.۵]• ...
  • Bonaccorsi, E., S. Merlino, and A.R. Kampf, The crystal structure ...
  • Bonaccorsi, E., Merlino, S., & Taylor, H. F. W. (۲۰۰۴). ...
  • Carpenter, A.B.; Chalmers, R.A.; Gard, J.A.; Speakman, K.; Taylor, H.F.W. ...
  • Li, Z. (۲۰۱۱). Advanced concrete technology. John Wiley & Sons ...
  • Gard, J. A., & Taylor, H. F. W. (۱۹۶۰). The ...
  • Gard, J. A., & Taylor, H. F. W. (۱۹۵۶). Okenite ...
  • Merlino, S. (۱۹۸۳). Okenite, Ca۱۰Si۱۸O۴۶.۱۸H۲O; the first example of a ...
  • Ohashi, Y. and L.W. Finger, Role of octahedral cations in ...
  • Malik, K. M. A., & Jeffery, J. W. (۱۹۷۶). A ...
  • Yamnova, N. A., Sarp, K., Egorov-Tismenko, Y. K., Pushcharovski, D., ...
  • Alder, B. J.; T. E. Wainwright (۱۹۵۹). "Studies in Molecular ...
  • Shu, Xin, et al. "Tailoring the solution conformation of polycarboxylate ...
  • Wu, W., Al-Ostaz, A., Cheng, A. H. D., & Song, ...
  • Accelrys Inc. Materials studio ۷.۰ software. San Diego (CA); ۲۰۰ ...
  • COMPASS: an ab initio force-field optimized for condensed-phase applications overview ...
  • Mayo, S. L., Olafson, B. D., & Goddard, W. A. ...
  • Rappé, A. K., Casewit, C. J., Colwell, K. S., Goddard ...
  • Cygan, R.T., J.J. Liang, and A.G. Kalinichev, Molecular models of ...
  • Galmarini, S. C. (۲۰۱۳). Atomistic simulation of cementitious systems ...
  • Dauber‐Osguthorpe, P., Roberts, V. A., Osguthorpe, D. J., Wolff, J., ...
  • Mishra, R. K.; Flatt, R. J.; Heinz, H. Force Field ...
  • Mishra, R. K.; Fernandez-Carrasco, L.; Flatt, R. J.; Heinz, H. ...
  • Merlino, S., Bonaccorsi, E., & Armbruster, T. (۲۰۰۰). The real ...
  • Merlino, S., Okenite, Ca۱۰Si۱۸O۴۶ •۱۸H۲O - The first example of ...
  • Ohashi, Y., Polysynthetically-twinned structures of enstantite and wollastonite. Physics and ...
  • Haecker, C., et al., Modeling the linear elastic properties of ...
  • Hill, R. (۱۹۵۲). The elastic behaviour of a crystalline aggregate. ...
  • Dharmawardhana, C. C., Misra, A., Aryal, S., Rulis, P., & ...
  • Laugesen, J. L. (۲۰۰۴). Density functional calculation of elastic properties ...
  • Constantinides, G., & Ulm, F. J. (۲۰۰۴). The effect of ...
  • C. Plassard, E. Lesniewska, I. Pochard, and A. Nonat, “Intrinsic ...
  • R. Alizadeh, J. J. Beaudoin, and L. Raki, “Viscoelastic Nature ...
  • Dormieux, L., D. Kondo, and F.J. Ulm, Microporomechanics. ۲۰۰۶: John ...
  • Mori, T., & Tanaka, K. (۱۹۷۳). Average stress in matrix ...
  • Mondal, P., Shah, S. P., & Marks, L. (۲۰۰۷). A ...
  • نمایش کامل مراجع