Predicting Resilient Modulus of Clayey Subgrade Soils by Means of Cone Penetration Test Results and Back-Propagation Artificial Neural Network

Publish Year: 1401
نوع سند: مقاله ژورنالی
زبان: English
View: 222

This Paper With 17 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

این Paper در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_CIVLJ-10-4_009

تاریخ نمایه سازی: 23 شهریور 1403

Abstract:

Resilient modulus (Mr) of subgrade soils is considered as one of the most important factors for designing flexible pavements using empirical methods as well as mechanistic-empirical methods. The resilient modulus is commonly measured by a dynamic triaxial loading test, which is complex and expensive. In this research, back-propagation artificial neural network method has been employed to model the resilient modulus of clayey subgrade soils based on the results of the cone penetration test. The prediction of the resilient modulus of clayey subgrade soil can be possible through the developed neural network based on the parameters of the cone tip resistance (qc), sleeve friction (fs), moisture content (w), and dry density (γd). The results of the present study show that the coefficients of determination (R۲) for training and testing sets are ۰.۹۸۳۷ and ۰.۹۷۵۷, respectively. According to the sensitivity analysis results, the moisture content is the least important parameter to predict the resilient modulus of clayey subgrade soils, while the importance of other parameters is almost the same. In this study, the effect of different parameters on the resilient modulus of clayey subgrade soil was evaluated using parametric analysis and it was found that with increasing the cone tip resistance (qc), the sleeve friction (fs) and the dry density (γd) and also with decreasing the moisture content (w) of soils, the resilient modulus of clayey subgrade soils increases.

Authors

Ali Reza Ghanizadeh

Department of Civil Engineering, Sirjan University of Technology, Sirjan, Iran

Arash Ziaee

Department of Civil Engineering, Sirjan University of Technology, Sirjan, Iran

Seyed Mohammad Hossein Khatami

Department of Civil Engineering, Technical and Vocational University (TVU), Tehran, Iran

Pouyan Fakharian

Faculty of Civil Engineering, Semnan University, Semnan, Iran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • Zaman M, Solanki P, Ebrahimi A, White L. Neural network ...
  • AASHTO AA of SH and TO (AASHTO). Guide for Design ...
  • ARA. Guide for Mechanistic–Empirical Design of New and Rehabilitated Pavement ...
  • Gudishala R. Development of resilient modulus prediction models for base ...
  • Hicks RG, Monismith CL. Factors influencing the resilient response of ...
  • Kim W, Labuz JF. Resilient Modulus And Strength Of Base ...
  • Kim SH, Yang J, Jeong JH. Prediction of subgrade resilient ...
  • NCHRP. (NCHRP), National Cooperative Highway Research Program. Guid. Mech. Des. ...
  • Drumm E, Boateng P, Johnson P. Estimation of subgrade resilient ...
  • Kim D-G. Engineering properties affecting the resilient modulus of fine-grained ...
  • George K. Prediction of resilient modulus from soil index properties. ...
  • Andrei D, Witczak MW, Schwartz CW, Uzan J. Harmonized resilient ...
  • Kim, Kim JR. Resilient behavior of compacted subgrade soils under ...
  • Mazari M, Navarro E, Abdallah I, Nazarian S. Comparison of ...
  • AASHTO. Guide for Design of Pavement Structures. vol. ۱. Washington: ...
  • Park, Kweon G, Lee SR. Prediction of resilient modulus of ...
  • Heidarabadizadeh N, Ghanizadeh AR, Behnood A. Prediction of the resilient ...
  • Ghanizadeh, Rahrovan M. Application of artifitial neural network to predict ...
  • Ghanizadeh AR, Heidarabadizadeh N, Heravi F. Gaussian Process Regression (GPR) ...
  • Heukelom W, Klomp A. DYNAMIC TESTING AS A MEANS OF ...
  • Duncan JM, Buchignani AL. An Engineering Manual for Settlement Studies. ...
  • Mohammad LN, Titi HH, Herath A. Evaluation of resilient modulus ...
  • Mohammad LN, Titi HH, Herath A; Effect of moisture content ...
  • Dehler W, Labuz J. Cone Penetration Testing in Pavement Design. ...
  • Mohammad LN, Herath A, Abu-Farsakh MY, Gaspard K, Gudishala R. ...
  • Puppala AJ, Acar YB, Tumay MT. Cone Penetration in Very ...
  • Lunne T, Robertson PK, Powell JJM. Cone Penetration Testing in ...
  • Mayne PW. Cone penetration testing: a synthesis of highway practice. ...
  • Liu S, Cai G, Puppala AJ, Tu Q. Prediction of ...
  • Cai G, Liu S, Puppala AJ, Tong L. Assessment of ...
  • Cai G, Liu S, Puppala AJ. Reliability assessment of CPTU-based ...
  • Cai G, Puppala AJ, Liu S. Characterization on the correlation ...
  • Hassan A Bin. The effects of material parameters on Dynamic ...
  • George KP, Uddin W. Subgrade characterization for highway pavement design. ...
  • Herath A, Mohammad L, Gaspard K, Gudishala R, Abu-Farsakh M. ...
  • Liu S, Zou H, Cai G, Bheemasetti TV, Puppala AJ, ...
  • Zou H, Liu S, Cai G, Puppala AJ, Bheemasetti TV. ...
  • Zhang Y, Li T, Wang Y. Theoretical elastic solutions for ...
  • Zhang W. MARS Use in Prediction of Collapse Potential for ...
  • Sadrossadat E, Ghorbani B, Zohourian B, Kaboutari M, Rahimzadeh Oskooei ...
  • Ghorbani, Behnam Arulrajah A, Narsilio G, Horpibulsuk S, Bo MW. ...
  • Ghanizadeh AR, Delaram A. Development of Predictting Model for Clay ...
  • Rezazadeh Eidgahee D, Haddad A, Naderpour H. Evaluation of shear ...
  • Rezazadeh Eidgahee D, Rafiean AH, Haddad A. A Novel Formulation ...
  • Naderpour H, Nagai K, Fakharian P, Haji M. Innovative models ...
  • Naderpour H, Rafiean AH, Fakharian P. Compressive strength prediction of ...
  • Naderpour H, Sharei M, Fakharian P, Heravi MA. Shear Strength ...
  • Khademi A, Behfarnia K, Kalman Šipoš T, Miličević I. The ...
  • Farhangi V, Jahangir H, Eidgahee DR, Karimipour A, Javan SAN, ...
  • Rezazadeh Eidgahee D, Fasihi F, Naderpour H. Optimized Artificial Neural ...
  • Rumelhart DE, Hinton GE, Williams RJ. Learning representations by back-propagating ...
  • Siddique N, Adeli H. Computational intelligence: synergies of fuzzy logic, ...
  • Naderpour H, Rezazadeh Eidgahee D, Fakharian P, Rafiean AH, Kalantari ...
  • Jahangir H, Rezazadeh Eidgahee D. A new and robust hybrid ...
  • ASTM D۵۷۷۸. International Standard Test Method for Electronic Friction Cone ...
  • ISSMFE I. Report of the ISSMFE Technical Committee on Penetration ...
  • AASHTO T ۳۰۷. Determining the Resilient Modulus of Soils and ...
  • نمایش کامل مراجع