Second-Order Statistical Texture Representation of Asphalt Pavement Distress Images Based on Local Binary Pattern in Spatial and Wavelet Domain

Publish Year: 1398
نوع سند: مقاله ژورنالی
زبان: English
View: 64

This Paper With 20 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_CIVLJ-7-3_004

تاریخ نمایه سازی: 23 شهریور 1403

Abstract:

Assessment of pavement distresses is one of the important parts of pavement management systems to adopt the most effective road maintenance strategy. In the last decade, extensive studies have been done to develop automated systems for pavement distress processing based on machine vision techniques. One of the most important structural components of computer vision is the feature extraction method. In most of the application areas of image processing, textural features provide more efficient information of image regions properties than other characteristics. In this research, three different algorithms were used to extract the feature vector and statistically analyzing the texture of six various types of asphalt pavement surface distresses. The first algorithm is based on the extraction of images second-order textural statistics utilizing gray level co-occurrence matrix in spatial domain. In second and third algorithms, the second-order descriptors of images local binary patterns were extracted in spatial and wavelet transform domain, respectively. The classification of the distress images based on a combination of K-nearest neighbor method and Mahalanobis distance, indicates that two stages arranging of the gray levels of the distress images edges by applying wavelet transform and local binary pattern (third algorithm) had a superior result in comparison with other algorithms in texture recognition and separation of pavement distresses. Classification performance accuracy of the distress images based on first, second and third feature extraction algorithms is ۶۱%, ۷۵% and ۹۷%, respectively.

Keywords:

Pavement distress texture , Computer vision , Gray level co-occurrence matrix (GLCM) , Local binary pattern (LBP) , Wavelet Transform

Authors

Reza Shahabian Moghaddam

M.Sc., Civil Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran

Abolfazl Mohammadzadeh Moghaddam

Department of Civil Engineering, Ferdowsi University of Mashhad, Mashhad, Iran

Seyed Ali Sahaf

Assistant Professor, Department of Civil Engineering, Ferdowsi university of mashhad, Iran.

Hamid reza Pourreza

Professor, Department of Computer Engineering, Ferdowsi university of mashhad, Iran.

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • Khodakarami, M., Khakpour Moghaddam, H. (۲۰۱۷). 'Evaluating the Performance of ...
  • Shahabian Moghaddam, R., Sahaf, S. A., Mohammadzadeh Moghaddam, A., Pourreza, ...
  • Wang, K. C. P., Li, Q. J., Yang, G., Zhan, ...
  • Zakeri, H., Moghadas Nejad, F. and Fahimifar, A. (۲۰۱۶) “Image ...
  • Chua, K. M. and Xu, L. (۱۹۹۴) “Simple procedure for ...
  • Nallamothu, S. and Wang, K. C. P. (۱۹۹۶) “Experimenting with ...
  • Cheng, H. D., Glazier, C. and Hu, Y. G. (۱۹۹۹) ...
  • Lee, D. (۲۰۰۳) “A robust position invariant artificial neural network ...
  • Zou, Q., Cao, Y., Li, Q., Mao, Q. and Wang, ...
  • Wang, K. C. P. (۲۰۰۹) “Wavelet-based pavement distress image edge ...
  • Moghadas Nejad, F. and Zakeri, H. (۲۰۱۱) “A comparison of ...
  • Ouyang, A., Dong, Q., Wang, Y. and Liu, Y. (۲۰۱۴) ...
  • Moghadas Nejad, F. and Zakeri, H. (۲۰۱۱) “An optimum feature ...
  • Gonzalez, R.C. and Woods, R.E. (۲۰۰۶) “Digital image processing ۳/E”, ...
  • Srinivasan, G. N. and Shobha, G. (۲۰۰۸) “Statistical texture analysis”, ...
  • Aggarawal, N. and Agrawal, R. K. (۲۰۱۲) “First and second ...
  • Hoseini Vaez, S., Dehghani, E., Babaei, V. (۲۰۱۷). 'Damage Detection ...
  • Shahabian Moghaddam, Reza (۱۳۹۶), "Automatic Recognition and Classification of Pavement ...
  • T. Ojala, M. Pietikäinen, and T. T. Mäenpää, ۲۰۰۲. “Multiresolution ...
  • Stollnitz, E., Derose, T., & Salesin, D. (۱۹۹۵). Wavelets for ...
  • Singh, R. (۲۰۱۶) “A comparison of gray-level run length matrix ...
  • Chang, T. and Kuo, J. (۱۹۹۳) “Texture analysis & classification ...
  • Wimmer, G., Tamaki, T., Hafner, M., Yoshida, S., Tanaka, S. ...
  • Naderpour, H., Fakharian, P. (۲۰۱۶) “A synthesis of peak picking ...
  • Mojsilovic, A. and Sevic, D. (۱۹۹۶), Classification of the ultrasound ...
  • Kara, B., & Watsuji, N. (۲۰۰۳). Using wavelets for texture ...
  • Z. Guo, L. Zhang, and D. Zhang, “A completed modeling ...
  • Horng, M.H., Sun, Y.N. and Lin, X.Z. (۲۰۰۰) “Texture feature ...
  • Dettori, L. and Semlera, L. (۲۰۰۷) “A comparison of wavelet, ...
  • T. Ahonen, A. Hadid, and M. Pietikäinen, “Face recognition with ...
  • Shahabian Moghaddam, R., Sahaf, S. A., Mohammadzadeh Moghaddam, A., Pourreza, ...
  • Moghadas Nejad, F. and Zakeri, H. (۲۰۱۱) “An expert system ...
  • نمایش کامل مراجع