Dam Seepage Prediction Using RBF and GFF Models of Artificial Neural Network; Case Study: Boukan Shahid Kazemi's Dam
Publish Year: 1398
نوع سند: مقاله ژورنالی
زبان: English
View: 52
This Paper With 18 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_CIVLJ-7-3_002
تاریخ نمایه سازی: 23 شهریور 1403
Abstract:
Dams have been always considered as the important infrastructures and their critical values measured. Hence, evaluation and avoidance of dams’ destruction have a specific importance. In this study seepage of the embankmentof Boukan Shahid Kazemi’s dam in Iran has been analyzed via RBF (radial basis function network) and GFF (Feed-Forward neural networks) models of Artificial Neural Network (ANN). RBF and GFF of ANN models were trained and verified using each piezometer’s data and the water levels difference of the dam. To achieve this goal,based on the number of data and inputs,۸۶۴piezometric data set were used, of which ۸۰% (۶۹۱ data) was used for the training and ۲۰% (۱۷۴ data) for the testing the network.The results showed good agreement between observed and predicted values and concluded the RBF model has high potential in estimating seepage with Levenberg Marquardt training and ۴ hidden layers. Also the values of statistical parameters R۲ and RMSE were ۰.۸۱ and the ۳۳.۱۲.
Keywords:
Authors
Somayeh Emami
Water Engineering Department, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
Yahya Choopan
Water Engineering Department, Faculty of Agriculture, University of Gorgan, Gorgan, Iran
Javad Parsa
Water Engineering Department, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :