سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

A Survey of Transfer Learning and Categories

Publish Year: 1400
Type: Journal paper
Language: English
View: 49

This Paper With 8 Page And PDF Format Ready To Download

Export:

Link to this Paper:

Document National Code:

JR_MSEEE-1-3_003

Index date: 23 September 2024

A Survey of Transfer Learning and Categories abstract

In a variety of real-world scenarios, techniques such as machine learning and data mining are applied. Traditional machine learning frameworks suppose that training data and testing data come from the same domain, have the same feature space, and have the same feature space distribution. This assumption, however, is capable of being applied in certain realistic machine learning cases, especially when gathering training data is prohibitively costly or impossible. As a result, high-performance learners must be developed using data that is more conveniently gathered from various domains. Transfer learning is the name given to this method; it is a learning environment based on a person's capacity to extrapolate information through activities to learn more quickly. Transfer learning tries to establish a structure for applying previous knowledge learned skills to tackle new but related issues more swiftly and efficiently. Transfer learning methodologies, in opposition to traditional machine learning technics, use data from auxiliary domains to enhance predictive modelling of distinct data patterns in the present domain. Transfer learning focuses on improving target participants' performance on target domains by passing data or knowledge from numerous but similar source domains. As a result, the reliance on a various number of target-domain available data for building target learners can be minimized. This survey paper explains transfer learning categories based on problems and solutions and explains experiment results and examples of its application and perspective related to transfer learning. Also, it provides a concise overview of the processes and methods of transfer learning, which may aid readers in better understanding the current research state and idea.

A Survey of Transfer Learning and Categories Keywords:

A Survey of Transfer Learning and Categories authors

Masoume Gholizade

Electrical and Computer Engineering Faculty, Semnan University, Semnan, Iran

Hadi Soltanizadeh

Electrical and Computer Engineering Faculty, Semnan University, Semnan, Iran

Mohammad Rahmanimanesh

Electrical and Computer Engineering Faculty, Semnan University, Semnan, Iran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
F. Zhuang et al., “A Comprehensive Survey on Transfer Learning,” ...
Z. Wan, R. Yang, M. Huang, N. Zeng, and X. ...
K. Weiss, T. M. Khoshgoftaar, and D. D. Wang, “A ...
S. J. Pan and Q. Yang, “A Survey on Transfer ...
N. Agarwal, A. Sondhi, K. Chopra, and G. Singh, “Transfer ...
G. Wilson and D. J. Cook, “A Survey of Unsupervised ...
“Annoyed Realm Outlook Taxonomy Using Twin Transfer Learning,” Int. J. ...
L. Xie, Z. Deng, P. Xu, K. S. Choi, and ...
J. Wang, G. Wang, and M. Zhou, “Bimodal vein data ...
H. S. Bhatt, R. Singh, M. Vatsa, and N. K. ...
Z. Deng, Y. Jiang, H. Ishibuchi, K.-S. Choi, and S. ...
R. S. Simões, V. G. Maltarollo, P. R. Oliveira, and ...
R. Socher, M. Ganjoo, H. Sridhar, O. Bastani, C. D. ...
M. Palatucci, D. Pomerleau, G. Hinton, and T. M. Mitchell, ...
B. Romera-Paredes and P. H. S. Torr, “An embarrassingly simple ...
B. Yang, A. J. Ma, and P. C. Yuen, “Learning ...
A. Siddhant, A. Goyal, and A. Metallinou, “Unsupervised transfer learning ...
S. Ghosh, R. Singh, M. Vatsa, V. M. Patel, and ...
B. Cao, N. N. Liu, and Q. Yang, “Transfer learning ...
Q. Zhu, Yin and Chen, Yuqiang and Lu, Zhongqi and ...
C. Wang and S. Mahadevan, “Heterogeneous domain adaptation using manifold ...
G. J. Qi, C. Aggarwal, and T. Huang, “Towards semantic ...
P. Prettenhofer and B. Stein, “Cross-language text classification using structural ...
J. Nam and S. Kim, “Heterogeneous defect prediction,” ۲۰۱۵ ۱۰th ...
B. Gong, K. Grauman, and F. Sha, “Connecting the dots ...
Y. Yao and G. Doretto, “Boosting for transfer learning with ...
B. Wang, J. A. Mendez, M. B. Cai, and E. ...
S. J. Pan, I. W. Tsang, J. T. Kwok, and ...
Si Si, Dacheng Tao, and Bo Geng, “Bregman Divergence-Based Regularization ...
Boqing Gong, Yuan Shi, Fei Sha, and K. Grauman, “Geodesic ...
M. Long, J. Wang, G. Ding, J. Sun, and P. ...
C. Perlich, B. Dalessandro, T. Raeder, O. Stitelman, and F. ...
H. Li, Y. Shi, Y. Liu, A. G. Hauptmann, and ...
R. Chattopadhyay, Q. Sun, W. Fan, I. Davidson, S. Panchanathan, ...
M. Long, J. Wang, G. Ding, S. J. Pan, and ...
L. Bin, Y. Qiang, and X. Xiangyang, “Transfer learning for ...
B. Li, Q. Yang, and X. Xue, “Can movies and ...
M. Jiang, P. Cui, F. Wang, Q. Yang, W. Zhu, ...
V. Behbood, J. Lu, and G. Zhang, “Text categorization by ...
P. Swietojanski, A. Ghoshal, and S. Renals, “Unsupervised cross-lingual knowledge ...
J. T. Huang, J. Li, D. Yu, L. Deng, and ...
J. Yoo, Y. Hong, Y. Noh, and S. Yoon, “Domain ...
Y. Luo, L. Zheng, T. Guan, J. Yu, and Y. ...
C. Chen, Q. Dou, H. Chen, and P. A. Heng, ...
C. S. Perone, P. Ballester, R. C. Barros, and J. ...
D. C. Ciresan, U. Meier, and J. Schmidhuber, “Transfer learning ...
Y. Ma, W. Gong, and F. Mao, “Transfer learning used ...
H. A. Ogoe, S. Visweswaran, X. Lu, and V. Gopalakrishnan, ...
L. D. Nguyen, D. Lin, Z. Lin, and J. Cao, ...
M. Raghu, C. Zhang, J. Kleinberg, and S. Bengio, “Transfusion: ...
S. U. Khan, N. Islam, Z. Jan, I. Ud Din, ...
S. M. Salaken, A. Khosravi, T. Nguyen, and S. Nahavandi, ...
نمایش کامل مراجع