Copy-Move Forgery Detection Using Fast Retina Keypoint (FREAK) Descriptor
Publish place: Journal of Modeling & Simulation in Electrical & Electronics Engineering، Vol: 2، Issue: 2
Publish Year: 1401
Type: Journal paper
Language: English
View: 68
This Paper With 7 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
Export:
Document National Code:
JR_MSEEE-2-2_001
Index date: 23 September 2024
Copy-Move Forgery Detection Using Fast Retina Keypoint (FREAK) Descriptor abstract
Image forgery, the manipulation of an image to hide some meaningful or helpful information, is widely used to manage the large amount of information being exchanged in the form of images. There are different forms of image forgery, and copy--move forgery is the most common form of it. The copy-move forgery is easy to perform yet challenging to detect due to the similarity between the original part of the image and the copied part. In this paper, we employ a keypoint descriptor inspired by the human visual system, namely the FREAK (Fast Retina Keypoint) descriptor, for robust copy-move forgery detection. This method uses the advantages of FREAK descriptor such as fast computing and low memory load compared to SIFT, SURF, and BRISK. Finally, geometric transformation parameters are extracted and discussed. Results confirm promising results in the case of image post-processing operations such as adding noise, illumination change, and geometric transformations such as rotation and scaling.
Copy-Move Forgery Detection Using Fast Retina Keypoint (FREAK) Descriptor Keywords:
Copy-Move Forgery Detection Using Fast Retina Keypoint (FREAK) Descriptor authors
Ardeshir Ghasemi Yegane
Faculty of Electrical and Computer Engineering (ECE), Semnan University,Semnan,Iran
kourosh Kiani
Faculty of Electrical and Computer Engineering (ECE), Semnan University,Semnan,Iran
Razieh Rastgoo
Faculty of Electrical and Computer Engineering (ECE), Semnan University,Semnan,Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :