سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

Advancements and challenges in agriculture: a comprehensive review of machine learning and IoT applications in vertical farming and controlled environment agriculture

Publish Year: 1403
Type: Journal paper
Language: English
View: 68

This Paper With 28 Page And PDF Format Ready To Download

این Paper در بخشهای موضوعی زیر دسته بندی شده است:

Export:

Link to this Paper:

Document National Code:

JR_BDCV-4-2_001

Index date: 5 October 2024

Advancements and challenges in agriculture: a comprehensive review of machine learning and IoT applications in vertical farming and controlled environment agriculture abstract

Farming is not easy to approach things, as we must feed approximately 8 million people daily. Traditional farming is an old-fashioned technique that takes so much time to produce. Due to this, we need some modern technology to increase our production. But research has shown that in 50 years, there will be 8.3 billion more people on Earth than there are now. It will need an extra 109 hectares of cropland, which doesn't already exist, to feed these new immigrants. There are also clear signs that pollution and the rise in population are worsening. Despite the benefits of smart traditional farming, there are a number of drawbacks to traditional farming. Regardless of soil pollution, water pollution, land pollution, energy loss, climatic conditions, electricity waste, and transportation costs, another option will be better for the food production industry. According to the research, to feed 8 billion people, we would need an additional 109 hectares of land. That is the typical problem that the farmers will face because most of the hollandaise nowadays. So, using this building concept, we will implement indoor farming, which means planting fruits and vegetables inside the tall building, an advanced form of a greenhouse. The innovative idea, also known as Vertical Farming (VF), integrates agricultural design with building design in a tall structure inside of cities. Implementing VF will solve many challenges by utilizing modern machine learning, IoT, and AI techniques, increasing VF productivity and quality. In VF, aeroponics consumes 98% less water than conventional farming. Human health, comfort, and productivity directly correlate with the indoor climate. Systems for vertical plant walls with sensors and actuators have become a good way to control the environment inside a building. They are using a set-up of vertical plant walls with anomaly detection techniques based on machine learning to increase automation and intelligence for predictive indoor climate maintenance.

Advancements and challenges in agriculture: a comprehensive review of machine learning and IoT applications in vertical farming and controlled environment agriculture Keywords:

Drawbacks of traditional farming , Vertical farming , Sensors and actuators , Anomaly Detection , Predictive indoor climate maintenance

Advancements and challenges in agriculture: a comprehensive review of machine learning and IoT applications in vertical farming and controlled environment agriculture authors

Binoy Sasmal

Department of Computer Science and Engineering, National Institute of Technology, Arunachal Pradesh.

Gobinda Das

Department of Computer Science and Engineering, Seacom Engineering College, Howrah, West Bengal, India.

Preeti Mallick

Department of Computer Science and Engineering, Seacom Engineering College, Howrah, West Bengal, India.

Sneha Dey

Department of Computer Science and Engineering, Seacom Engineering College, Howrah, West Bengal, India.

Suman Ghorai

Department of Computer Science and Engineering, Seacom Engineering College, Howrah, West Bengal, India.

Subrata Jana

Department of Mathematics, Jadavpur University, Kolkata, West Bengal, India.

Chiranjibe Jana

Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai ۶۰۲۱۰۵, Tamil Nadu, India.

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
Abukhader, R., & Kakoore, S. (۲۰۲۱). Artificial Intelligence for Vertical ...
Haris, I., Fasching, A., Punzenberger, L., & Grosu, R. (۲۰۱۹). ...
Bhuvaneswari, P., Priyanka, M. G., Sandeep, S., Sridhar, R., & ...
Shrivastava, A., Nayak, C. K., Dilip, R., Samal, S. R., ...
Anubhove, M. S. T., Ashrafi, N., Saleque, A. M., Akter, ...
Kour, V. P., & Arora, S. (۲۰۲۰). Recent developments of ...
Sangeetha, T., & Ezhumalai, P. (۲۰۲۰). WITHDRAWN: Enhanced and cost-effective ...
Kalantari, F., Mohd Tahir, O., Mahmoudi Lahijani, A., & Kalantari, ...
Chandrasekhar. (۲۰۲۲). Lettuce plant leaf datasets. https://github.com/chandru۱۱۲۳۵/Lettuce-plant-leaf- Dataset ...
Despommier, D. (۲۰۱۱). The vertical farm: controlled environment agriculture carried ...
Tamana, C. G., Ravishankar, T. N., Bakala, G. K., Lawrence, ...
Liu, Y., Pang, Z., Karlsson, M., & Gong, S. (۲۰۲۰). ...
Rosero-Montalvo, P. D., Erazo-Chamorro, V. C., López-Batista, V. F., Moreno-Garc\’\ia, ...
Hastie, T., Tibshirani, R., Friedman, J. H., & Friedman, J. ...
Gour, M. S., Reddy, V., Vamsi, M., Sridhar, N., Ram, ...
Masuzawa, H., Miura, J., & Oishi, S. (۲۰۱۷). Development of ...
Mehra, M., Saxena, S., Sankaranarayanan, S., Tom, R. J., & ...
Jandl, A., Frangoudis, P. A., & Dustdar, S. (۲۰۲۱). Edge-based ...
Siropyan, M., Celikel, O., & Pinarer, O. (۲۰۲۲). Artificial intelligence ...
Chakraborty, A., Das, S., & Mondal, B. (۲۰۲۲). Integrating Neural ...
Fu, L., Majeed, Y., Zhang, X., Karkee, M., & Zhang, ...
Jaiswal, H., Singuluri, R., Sampson, S. A., & others. (۲۰۱۹). ...
Pallavi, S., Mallapur, J. D., & Bendigeri, K. Y. (۲۰۱۷). ...
Bakar, M. N. A., & Audah, L. H. M. (۲۰۲۱). ...
Viljanen, N., Honkavaara, E., Näsi, R., Hakala, T., Niemeläinen, O., ...
Halgamuge, M. N., Bojovschi, A., Fisher, P. M. J., Le, ...
Virkajärvi, P. (۱۹۹۹). Comparison of three indirect methods for prediction ...
Liu, Y., Mousavi, S., Pang, Z., Ni, Z., Karlsson, M., ...
Singh, R., Thakur, A. K., Gehlot, A., & Kaviti, A. ...
Chen, Q., Li, L., Chong, C., & Wang, X. (۲۰۲۲). ...
Nguyen, K., Fookes, C., Ross, A., & Sridharan, S. (۲۰۱۷). ...
Hernandez-Diaz, K., Alonso-Fernandez, F., & Bigun, J. (۲۰۱۸). Periocular recognition ...
Zeiler, M. D., & Fergus, R. (۲۰۱۴). Visualizing and understanding ...
Seethalakshmi, K., Valli, S., Veeramakali, T., Kanimozhi, K. V, Hemalatha, ...
LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (۱۹۹۸). ...
Sarika, N., Sirisala, N., & Velpuru, M. S. (۲۰۲۱). CNN ...
Noorani, S., & Fernandes, M. (۲۰۱۷). Evaluation of convolutional neural ...
Kyaw, M. M., Yee, M. M., & others. (۲۰۱۹). Pest ...
Anand, R., Das, J., & Sarkar, P. (۲۰۲۱). Comparative analysis ...
Cho, S., Kim, C., Park, J., Sunwoo, M., & Jo, ...
Vadivel, R., Parthasarathi, R. V, Navaneethraj, A., Sridhar, P., Nafi, ...
Balasubramaniyan, M., & Navaneethan, C. (۲۰۲۱). Applications of Internet of ...
Calicioglu, O., Flammini, A., Bracco, S., Bellù, L., & Sims, ...
Kalantari, F., Tahir, O. M., Joni, R. A., & Fatemi, ...
bin Ismail, M. I. H., & Thamrin, N. M. (۲۰۱۷). ...
Fulari, U. N., Shastri, R. K., & Fulari, A. N. ...
Farooq, M. S., Riaz, S., Helou, M. A., Khan, F. ...
Rubanga, D. P., Hatanaka, K., & Shimada, S. (۲۰۱۹). Development ...
Lohitha, M., Priyadharsini, E. J., Sangeetha, K., Jeyanthi, J. E., ...
Nagamora, J. A., Carpio, J. M. A., Abdullah, A. H. ...
Henningsson, A. (۲۰۲۱). Survey of the application of machine learning ...
Wolfert, S., Ge, L., Verdouw, C., & Bogaardt, M. J. ...
Patrício, D. I., & Rieder, R. (۲۰۱۸). Computer vision and ...
Liu, Y., Ma, X., Shu, L., Hancke, G. P., & ...
Benke, K., & Tomkins, B. (۲۰۱۷). Future food-production systems: vertical ...
Ayaz, M., Ammad-Uddin, M., Sharif, Z., Mansour, A., & Aggoune, ...
Jayasekara, C., Banneka, S., Pasindu, G., Udawaththa, Y., Wellalage, S., ...
Siregar, R. R. A., Seminar, K. B., Wahjuni, S., & ...
Obu, U., Sarkarkar, G., & Ambekar, Y. (۲۰۲۱). Computer vision ...
López-Cruz, I. L., Fitz-Rodríguez, E., Salazar-Moreno, R., Rojano-Aguilar, A., & ...
Cambra, C., Sendra, S., Lloret, J., & Lacuesta, R. (۲۰۱۸). ...
Angelopoulos, C. M., Filios, G., Nikoletseas, S., & Raptis, T. ...
نمایش کامل مراجع