Investigating the Impact of Environmental Factors on Electricity Consumption Using Spatial Data Mining and Artificial Neural Network: A Case Study in Yazd City
Publish Year: 1403
نوع سند: مقاله ژورنالی
زبان: English
View: 53
This Paper With 15 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JEHSD-9-3_006
تاریخ نمایه سازی: 15 مهر 1403
Abstract:
Introduction: Modeling energy demand in different energy consuming sectors is a crucial measure for effective management of the energy sector and appropriate policies to increase productivity. The rising importance of energy resources in economic development is evident. Sustainable energy use is crucial for environmental protection and social progress. Understanding the factors affecting energy consumption is essential for effective energy management. Therefore, the purpose of the current study is to investigate the impact of environmental factors on household electricity consumption in Yazd city.
Materials and Methods: In the present research, various environmental factors affecting electricity consumption, including air pollution, air temperature in homes, ground surface temperature, and green space were investigated. The effects of these factors on electricity consumption of subscribers were investigated with ANN and apriori methods.
Results: Among the environmental factors, the distance to the regional park, the area of the park, and the amount of vegetation at a distance of ۳۰۰m have the greatest impact, respectively, and the average summer air temperature, the amount of vegetation at a radius of ۵۰۰ m, the distance from the local park, and the average summer NDVI have had the smallest effect. Unlike neural network methods, apriori presents relationships between parameters affecting electricity consumption transparently in the form of rules.
Conclusion: It's used to identify the most frequently occurring elements and meaningful associations in a dataset. Greenspace can be a mitigation strateegy for reduction of energy consumption.
Keywords:
Authors
Alireza Sarsangi
Department of Remote Sensing and GIS, Faculty of Geography, University of Tehran, Tehran, Iran.
Ara Toomanian
Department of Remote Sensing and GIS, Faculty of Geography, University of Tehran, Tehran, Iran
Najmeh Neysani Samany
Department of Remote Sensing and GIS, Faculty of Geography, University of Tehran, Tehran, Iran
Majid Kiavarz
Department of Remote Sensing and GIS, Faculty of Geography, University of Tehran, Tehran, Iran
Mohammad Hossein Saraei
Department of Geography, Yazd University, Yazd, Iran.
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :