سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

A Comparative Study of BSF Layers for InGaN Single-Junction and Multi-Junction Solar Cells

Publish Year: 1403
Type: Journal paper
Language: English
View: 75

This Paper With 17 Page And PDF Format Ready To Download

Export:

Link to this Paper:

Document National Code:

JR_JOPN-9-1_004

Index date: 23 October 2024

A Comparative Study of BSF Layers for InGaN Single-Junction and Multi-Junction Solar Cells abstract

Abstract The tunability of the InGaN band gap energy over a wide range provides a noble spectral match to sunlight, making it a suitable material for photovoltaic solar cells. The ineffectiveness of single junction solar cell to convert solar full spectrum into electrical energy leads to transparency loss in addition with excess excitation loss. An efficient BSF layer is an essential structural element to attain high efficiency in solar cells. In this work the impact of the BSF layer for InGaN single-junction and multi-junction solar cells is studied using the computational numerical modeling with Silvaco ATLAS simulation technique. The open circuit voltage (Voc) and circuit current density (Jsc) characteristics of the simulated cells and the variation of external quantum efficiency as a function of solar cell structures have been studied. For the optimized cell structure, the maximum Jsc = 14.6 mA/cm2, Voc = 3.087 V, and fill factor (FF) = 88.15% are obtained under AM1.5G illumination, exhibiting a maximum conversion efficiency of 36.1%.

A Comparative Study of BSF Layers for InGaN Single-Junction and Multi-Junction Solar Cells Keywords:

A Comparative Study of BSF Layers for InGaN Single-Junction and Multi-Junction Solar Cells authors

Maryam Amirhoseiny

Department of Engineering Sciences and Physics, Buein Zahra Technical University, Buein Zahra, Qazvin, Iran

Majid Zandi

Shahid Beheshti University, Tehran, Iran

Ahad Kheiri

Shahid Beheshti University, Tehran, Iran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :