سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

Chemical-Based Prediction of the Glass Transition Temperature ofPolymers using Machine Learning Approach

Publish Year: 1403
Type: Conference paper
Language: English
View: 53

متن کامل این Paper منتشر نشده است و فقط به صورت چکیده یا چکیده مبسوط در پایگاه موجود می باشد.
توضیح: معمولا کلیه مقالاتی که کمتر از ۵ صفحه باشند در پایگاه سیویلیکا اصل Paper (فول تکست) محسوب نمی شوند و فقط کاربران عضو بدون کسر اعتبار می توانند فایل آنها را دانلود نمایند.

این Paper در بخشهای موضوعی زیر دسته بندی شده است:

Export:

Link to this Paper:

Document National Code:

ISPST16_606

Index date: 30 October 2024

Chemical-Based Prediction of the Glass Transition Temperature ofPolymers using Machine Learning Approach abstract

Understanding and the ability to predict polymer properties such as Glass transition temperature hasalways been a crucial steps in polymer science. Tg is one the most important termal transitions ofpolymers, which defines their behavior and properties. Classical modeling techniques apply very hardto complex problems such as prediction of Tg; in order to overcome this challenge a new methodusing Aritificial neural networks has been implemented and various settings and configurations formultilayer perceptrons has been tested. The best architectures gave coefficient of determination ofaround 0.9 and show good predictive power considering the diversity of data. Moreover, theperformance exceeded that of previous parameterizations developed for this purpose and alsoperformed better than existing machine learning models.

Chemical-Based Prediction of the Glass Transition Temperature ofPolymers using Machine Learning Approach Keywords:

Polymer Characterization , Property Prediction , Machine learning و Artificial neuralnetwork , glass transition

Chemical-Based Prediction of the Glass Transition Temperature ofPolymers using Machine Learning Approach authors

B. Afsordeh

Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Iran

H. Shirali

Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Iran