An Imperialist Competitive Algorithm Artificial Neural Network Method to Predict Hydrate Formation Temperature
Publish place: The first national conference on new technologies in Chemistry & Chemical Engineering
Publish Year: 1392
نوع سند: مقاله کنفرانسی
زبان: English
View: 1,472
This Paper With 7 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
این Paper در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
NCNC01_583
تاریخ نمایه سازی: 14 شهریور 1392
Abstract:
Formation of gas hydrates is one of the problems in the production, processing, and transportation of natural gas. Therefore, an understanding of conditions where hydrates form is necessary to overcome hydrate related issues. Although several studies have been performed on prediction of hydrate forming conditions for various gas mixtures, but the developed correlations are not accurate enough and some of these correlations are presented mainly in graphical form, thus making it difficult to use them within general computer packages for simulation and design. In this paper, we adopt imperialist competitive algorithm (ICA) that is a new socio-politically motivated global search strategy and has recently been introduced for dealing with different optimization tasks to optimize the weight of multilayer perceptron (MLP) artificial neural network for prediction of hydrate formation temperature (HFT). ICA is used to decide the initial weights of the neural network. The ICA-ANN is applied to predict hydrate formation temperature by 302 experimental data points that have been collected from literature. The performance of the ICA-ANN is compared with ANN and the results demonstrate the effectiveness of the ICA-ANN.
Keywords:
Imperialist Competitive Algorithm (ICA) , Artificial Neural Network , Multilayer Perceptron (MLP) , hydrate temperature and Prediction
Authors
SeyyedMohammadReza Hesami
Department of Gas Engineering, Petroleum University of Technology, Ahwaz, Iran
Reza RanjbarNouri
Department of Gas Engineering, Petroleum University of Technology, Ahwaz, Iran
Behzad Bayramloo
Department of Gas Engineering, Petroleum University of Technology, Ahwaz, Iran
Peyman Moghaddam
National Iranian South Oil Company, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :