An Imperialist Competitive Algorithm Artificial Neural Network Method to Predict Hydrate Formation Temperature

Publish Year: 1392
نوع سند: مقاله کنفرانسی
زبان: English
View: 1,472

This Paper With 7 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

این Paper در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

NCNC01_583

تاریخ نمایه سازی: 14 شهریور 1392

Abstract:

Formation of gas hydrates is one of the problems in the production, processing, and transportation of natural gas. Therefore, an understanding of conditions where hydrates form is necessary to overcome hydrate related issues. Although several studies have been performed on prediction of hydrate forming conditions for various gas mixtures, but the developed correlations are not accurate enough and some of these correlations are presented mainly in graphical form, thus making it difficult to use them within general computer packages for simulation and design. In this paper, we adopt imperialist competitive algorithm (ICA) that is a new socio-politically motivated global search strategy and has recently been introduced for dealing with different optimization tasks to optimize the weight of multilayer perceptron (MLP) artificial neural network for prediction of hydrate formation temperature (HFT). ICA is used to decide the initial weights of the neural network. The ICA-ANN is applied to predict hydrate formation temperature by 302 experimental data points that have been collected from literature. The performance of the ICA-ANN is compared with ANN and the results demonstrate the effectiveness of the ICA-ANN.

Keywords:

Imperialist Competitive Algorithm (ICA) , Artificial Neural Network , Multilayer Perceptron (MLP) , hydrate temperature and Prediction

Authors

SeyyedMohammadReza Hesami

Department of Gas Engineering, Petroleum University of Technology, Ahwaz, Iran

Reza RanjbarNouri

Department of Gas Engineering, Petroleum University of Technology, Ahwaz, Iran

Behzad Bayramloo

Department of Gas Engineering, Petroleum University of Technology, Ahwaz, Iran

Peyman Moghaddam

National Iranian South Oil Company, Iran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • Campbel J. A., Gas _ and processing Volme 1, 1994, ...
  • Ghiasi, M.M, et all, Application of Artificial Neural Network (ANN) ...
  • Formation Temperature, 2011, Energy Sources, Part A: Recovery, Utilzation, and ...
  • Haupt R.L and Haupt S.E., Practical Genetic Algorthms, 2004, Second ...
  • Mollay Berneti, Sh, . Shahbazian, M., 2011, An Imperialist Competive ...
  • X. Qul, J. Feng, W. Sun, Parallel Genetc _ Model ...
  • Networks for Enterprise Comprehensive Business, IEEE Intl. Conf. on Intellgent ...
  • P.Tang and Z. Xi, The Research on BP Neural Network ...
  • Reed, R., Pruning algorithms--a survey, IEEE Trans. Neural Networks Vol.4, ...
  • M.C.P.de Souto, A.Yamazaki, T.B.Ludermir, Optimization of neural network weights and ...
  • نمایش کامل مراجع