سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

Investigating the Efficiency of Machine Learning Methods for Simulating the Effects of the Paper-Pulp Industry on Aqua Ecosystem Pollution

Publish Year: 1403
Type: Journal paper
Language: English
View: 86

This Paper With 11 Page And PDF Format Ready To Download

این Paper در بخشهای موضوعی زیر دسته بندی شده است:

Export:

Link to this Paper:

Document National Code:

JR_JWENT-9-4_007

Index date: 2 December 2024

Investigating the Efficiency of Machine Learning Methods for Simulating the Effects of the Paper-Pulp Industry on Aqua Ecosystem Pollution abstract

The paper and pull industry has grown exponentially since 1960 and it is one of the main reasons for water pollution. Due to the rapid extension of the paper and pull industry and its considerable role in aqua ecosystem pollution, analyzing and managing the related pollutant factors are essential. This is not an easy task since sewer space limitations for using monitoring equipment. In addition, laboratory analysis of pollutant factors takes a long time and may affected by measurement error or some undefined induced error. To overcome these difficulties, this paper aims to use machine learning tools for analyzing the pollutant space. The chemical oxygen demand (COD), mixed liquor suspended solids  (MLSS), and pH are considered the main parameters for analyzing pollutant systems. First, the experimental values of MLSS and COD for different hydraulic retention times (HRT=12, 18, and 24) are obtained. After that, the efficiency of linear regression, generalized additive model, neural network, and support vector regression for simulating and predicting the trend of MLSS and COD are investigated. In addition, these methods are considered for predicting pH in the membrane-aerated biofilm reactor (MBR) and the membrane-aerated biofilm reactor (MABR). The numerical results show that  NN is a highly accurate method for predicting COD and MLSS and GAM can predict pH accurately. In addition, the results indicate that HRT=18 is the most accurate and stable time retention for analyzing COD and MLSS.

Investigating the Efficiency of Machine Learning Methods for Simulating the Effects of the Paper-Pulp Industry on Aqua Ecosystem Pollution Keywords:

Investigating the Efficiency of Machine Learning Methods for Simulating the Effects of the Paper-Pulp Industry on Aqua Ecosystem Pollution authors

Mahmoud Ahmadi

Department of Chemistry, North Tehran Branch, Islamic Azad University, Tehran, Iran.

Mehran Davallo

Department of Chemistry, North Tehran Branch, Islamic Azad University, Tehran, Iran.

Mohsen Jahanshahi

Department of Chemical Engineering, Babol Noshirvani University of Technology, Babol, Iran.

Vahid Kiarostami

Department of Chemistry, North Tehran Branch, Islamic Azad University, Tehran, Iran.

Majid Peyravi

Department of Chemical Engineering, Babol Noshirvani University of Technology, Babol, Iran.

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
Ahmadi, M., et al., Exploring the application of the hybrid ...
Kumar, A., et al., Paper and pulp mill wastewater: characterization, ...
Tripathy, A., P. Dixit, and A. Panigrahi, Impact of effluent ...
Yekani, N.H., et al., Design and annual operation of full ...
Sharma, P. and S.P. Singh, Pollutants characterization and toxicity assessment ...
de Azevedo, A.R., et al., Characterizing the paper industry sludge ...
Zare Abyaneh, H., Evaluation of multivariate linear regression and artificial ...
Hur, J., et al., Estimation of biological oxygen demand and ...
Dogan, E., et al., Application of artificial neural networks to ...
Suen, J.-P. and J.W. Eheart, Evaluation of neural networks for ...
Aghdam, E., et al., Predicting quality parameters of wastewater treatment ...
Häck, M. and M. Köhne, Estimation of wastewater process parameters ...
Fan, R., S. Wang, and H. Chen, A COD measurement ...
Akbar, M.A., et al., Identification and Quantification of Aqueous Disinfectants ...
Cheng, Q., et al., Novel Ensemble Learning Approach for Predicting ...
Hamed, M.M., M.G. Khalafallah, and E.A. Hassanien, Prediction of wastewater ...
Zhang, S.-Z., S. Chen, and H. Jiang, A back propagation ...
Ekinci, E., et al., Application of machine learning algorithms and ...
Gambella, C., B. Ghaddar, and J. Naoum-Sawaya, Optimization problems for ...
Zhang, F. and L.J. O’Donnell, Support vector regression, in Machine ...
Freedman, D.A., Statistical models: theory and practice. ۲۰۰۹: cambridge university ...
Rencher, A.C. and W.F. Christensen, Chapter ۱۰, multivariate regression-Section ۱۰.۱, ...
Seal, H.L., Studies in the History of Probability and Statistics. ...
Peter, S.C., et al., Quantitative structure-activity relationship (QSAR): modeling approaches ...
Talha, M., S. Boulaknadel, and D. Aboutajdine, Enhancing Performance of ...
Hastie, T.J., Generalized additive models, in Statistical models in S. ...
Rubinstein, Y.D. and T. Hastie. Discriminative vs Informative Learning. in ...
Wood, S.N., N. Pya, and B. Säfken, Smoothing parameter and ...
نمایش کامل مراجع