سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

Stress leveling based on physiological parameters

Publish Year: 1403
Type: Journal paper
Language: English
View: 76

This Paper With 16 Page And PDF Format Ready To Download

Export:

Link to this Paper:

Document National Code:

JR_EAR-1-2_009

Index date: 10 December 2024

Stress leveling based on physiological parameters abstract

Diagnosing and controlling the level of stress in order to reduce the risks is so important. In this study, a system for detecting five levels of stress, i.e. physical stress, semi-emotional stress, emotional stress, cognitive stress, and resting state in people based on physiological signals, is presented. In the proposed method, the Non-EEG Dataset for Assessment of Neurological Status database, which is available on the Physionet website, is used. This database contains physiological signals from twenty people. These data were collected using non-invasive wrist biosensors. A set of statistical and frequency and wavelet features are calculated for electrodermal (EDA), temperature, acceleration, heart rate (HR) and arterial oxygen level (SpO2) signals. The determined features are applied as input to the classification units to detect the stress levels. Support vector machine (SVM), k nearest neighbor (kNN), decision tree (DT), ensemble learning and neural networks are evaluated as classification methods. Experimental results show that neural networks can separate different neural states of 5 classes with 97% accuracy.

Stress leveling based on physiological parameters Keywords:

Stress leveling based on physiological parameters authors

Haniyeh Baghdadi

Faculty of Electrical, Computer and Medical Engineering Shahab Danesh University, Qom, Iran

Mohammadreza Yazdani Kashani

Department of Electrical Engineering, Technical and Vocational University (TVU), Tehran, Iran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
Mao, N. (۲۰۲۲). The Role of Music Therapy in the ...
Kassymova, G. К., Tokar, O. V., Tashcheva, A. I., Slepukhina, ...
Sharma, S. K., & Pal, M. (۲۰۲۱). Stress and human ...
Sabatini, S., Martyr, A., Hunt, A., Gamble, L. D., Matthews, ...
Rachakonda, L., Mohanty, S. P., Kougianos, E., & Sundaravadivel, P. ...
Healey, J. A., & Picard, R. W. (۲۰۰۵). Detecting stress ...
Akmandor, A. O., & Jha, N. K. (۲۰۱۷). Keep the ...
Subhani, A. R., Mumtaz, W., Saad, M. N. B. M., ...
Choi, M., Koo, G., Seo, M., & Kim, S. W. ...
Liu, Y., & Du, S. (۲۰۱۸). Psychological stress level detection ...
Hssayeni, M. D., & Ghoraani, B. (۲۰۲۱). Multi-Modal Physiological Data ...
Physionet. (n.d.). PhysioBank ATM. NIGMC & NIBIB. https://archive.physionet.org/ cgi-bin/atm/AT ...
Becker, D. (۲۰۱۳). One nation under stress: The trouble with ...
Thayer, R. E. (۱۹۹۶). The origin of everyday moods: Managing ...
Gedam, S., & Paul, S. (۲۰۲۱). A Review on Mental ...
Cho, D., Ham, J., Oh, J., Park, J., Kim, S., ...
Kumar, B., Dikshit, O., Gupta, A., & Singh, M. K. ...
Tuncer, T., Dogan, S., & Subasi, A. (۲۰۲۱). EEG-based driving ...
Masoudi-Sobhanzadeh, Y., Motieghader, H., & Masoudi-Nejad, A. (۲۰۱۹). FeatureSelect: a ...
Lakens, D., & Caldwell, A. R. (۲۰۲۱). Simulation-Based Power Analysis ...
Aggarwal, C. C. (۲۰۱۵). Data Classification. In Data Mining: The ...
A. Ramezan, C., A. Warner, T., & E. Maxwell, A. ...
Li, Z., Yoon, J., Zhang, R., Rajabipour, F., Srubar Iii, ...
Ganaie, M. A., Hu, M., Malik, A. K., Tanveer, M., ...
Aouedi, O., Piamrat, K., & Parrein, B. (۲۰۲۲). Ensemble-Based Deep ...
Özbayrak, F., Foster, J. T., & Pyrcz, M. J. (۲۰۲۴). ...
Altman, N., & Krzywinski, M. (۲۰۱۷). Ensemble methods: bagging and ...
Krauss, P. (۲۰۲۴). Artificial Intelligence and Brain Research: Neural Networks, ...
نمایش کامل مراجع