سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

Breast Cancer Diagnosis Based on Frequency Converters and Extraction of Effective Features

Publish Year: 1403
Type: Journal paper
Language: English
View: 63

This Paper With 14 Page And PDF Format Ready To Download

Export:

Link to this Paper:

Document National Code:

JR_EAR-1-2_004

Index date: 10 December 2024

Breast Cancer Diagnosis Based on Frequency Converters and Extraction of Effective Features abstract

Breast cancer is the most common type of cancer among women. Early diagnosis of this disease and its treatment can significantly reduce the death rate from this cancer. The separation of benign and malignant masses in mammography images is one of the important things in the timely detection of breast cancer, which in some cases, due to the density and natural structure of the breast, deep and hidden disorders, make the diagnosis difficult for radiologists. In this study, frequency transformations and Naive Bayes classification have been used with the aim of extracting effective features in mammography images. The aim of the presented method is to increase the accuracy of diagnosis between malignant and benign tumors in mammography images. The results obtained from the implementation of the proposed method on the MIAS database show that the proposed method has been able to improve the accuracy of diagnosing this disease on normal and abnormal images by 91%, Precision by 98%, Recall by 987%, and F-measure by 90%.

Breast Cancer Diagnosis Based on Frequency Converters and Extraction of Effective Features Keywords:

Breast Cancer Diagnosis Based on Frequency Converters and Extraction of Effective Features authors

Farnaz Hoseini

Assistant Professor, Department of Computer Engineering, Technical and Vocational University (TVU), Tehran, Iran.

Hamed Sepehrzadeh

Assistant Professor, Department of Computer Engineering, Technical and Vocational University (TVU), Tehran, Iran.

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
Ayyoubzadeh, S. M., Baniasadi, T., Shirkhoda, M., Rostam Niakan Kalhori, ...
Escobar-Linero, E., Muñoz-Saavedra, L., Luna-Perejón, F., Civit-Masot, J., Rivas-Pérez, M., ...
Vaucelle, C., Ishii, H., & Paradiso, J. A. (۲۰۰۸, September ...
Campanella, S., Altaleb, A., Belli, A., Pierleoni, P., & Palma, ...
Sadoughi, F., Kazemy, Z., Hamedan, F., Owji, L., Rahmanikatigari, M., ...
Yari, Y., Nguyen, T. V., & Nguyen, H. T. (۲۰۲۰). ...
Gardezi, S. J. S., Elazab, A., Lei, B., & Wang, ...
Tsochatzidis, L., Costaridou, L., & Pratikakis, I. (۲۰۱۹). Deep Learning ...
Kavitha, T., Mathai, P. P., Karthikeyan, C., Ashok, M., Kohar, ...
Zonderland, H. M., Coerkamp, E. G., Hermans, J., Van De ...
Akay, M. F. (۲۰۰۹). Support vector machines combined with feature ...
Chen, H-L., Yang, B., Liu, J., & Liu, D-Y. (۲۰۱۱). ...
Ibrahim, S., Nazir, S., & Velastin, S. A. (۲۰۲۱). Feature ...
Mader, K. S. (۲۰۱۷). MIAS Mammography [Data set]. Kaggle. https://www.kaggle.co ...
Ting, F. F., Tan, Y. J., & Sim, K. S. ...
Eltoukhy, M. M., Gardezi, S. J. S., & Faye, I. ...
Gedik, N., & Atasoy, A. (۲۰۱۳). A computer-aided diagnosis system ...
Gardezi, S. J. S., Faye, I., & Eltoukhy, M. M. ...
Suckling, J., Parker, J., Dance, D., Astley, S., Hutt, I., ...
نمایش کامل مراجع