Quantum Machine Learning Unveiled: A Comprehensive Review
Publish Year: 1403
Type: Journal paper
Language: English
View: 76
This Paper With 20 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
Export:
Document National Code:
JR_EAR-1-2_002
Index date: 10 December 2024
Quantum Machine Learning Unveiled: A Comprehensive Review abstract
Quantum Machine Learning (QML) is a burgeoning field at the convergence of quantum computing and machine learning, with the potential to revolutionize traditional algorithms through principles of quantum mechanics. This article presents a thorough examination of foundational concepts in QML, elucidating qubits, quantum gates, superposition, and entanglement. It explores various QML algorithms, such as quantum neural networks, quantum support vector machines, and quantum clustering, which leverage quantum properties to tackle intricate computational tasks. Additionally, it explores the diverse applications of QML, including quantum chemistry, optimization, cryptography, and big data analysis. The article also discusses applications and various types of quantum machine learning libraries. Despite its promise, QML encounters challenges like scalability, noise, and error correction. Addressing these hurdles and realizing QML's full potential necessitates sustained research efforts and collaborative initiatives, poised to drive transformative progress across industries. This research, spanning four months and drawing insights from over 20 reputable scholarly articles, offers a comprehensive investigation into QML.
Quantum Machine Learning Unveiled: A Comprehensive Review Keywords:
Quantum Machine Learning Unveiled: A Comprehensive Review authors
Kazem Taghandiki
Department of Computer Engineering, Technical and Vocational University (TVU), Tehran, Iran.
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :