سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

A comparative study on the application of Regression-PSO and ANN methods to predict backbreak in open pit mines

Publish Year: 1400
Type: Journal paper
Language: Persian
View: 63

This Paper With 12 Page And PDF Format Ready To Download

Export:

Link to this Paper:

Document National Code:

JR_ANM-11-29_005

Index date: 10 December 2024

A comparative study on the application of Regression-PSO and ANN methods to predict backbreak in open pit mines abstract

• One of the most challenging safety problems in open pit mines is backbreak during blasting operation, and its prediction is very important for a technically and economically successful mining operation. To avoid backbreak, different parameters such as physicomechanical properties of rock mass, explosives properties and geometrical features of the blasting pattern should be considered. This paper presents a new solution of multiple linear regression (MLR), particle swarm optimization algorithm (PSO) and artificial neural networks (ANNs) to estimate the backbreak induced by bench blasting, based on major controllable blasting parameters. To this aim, Angouran mine in Iran was considered and blasting pattern parameters for ۷۳ operations were collected. In addition, back-break was measured in each operation. Considering the previous investigations and also collected data from the mine, burden, spacing, hole length, stemming, charge per delay, RQD, number of row and powder factor were selected as input parameters. In order to find the better solutions, the constructed models were implemented in PSO algorithms. Also, the prediction of backbreak was investigated using ANNs. According to the obtained results, the PSO algorithm is a suitable tool for optimizing models and obtaining more accurate prediction of backbreak. Among the presented empirical models, the optimized exponential model with PSO algorithm with a RMSE (۰.۳۱) and R۲ (۰.۸۷) shows the better results in prediction of backbreak and it is suitable for practical use in Angouran mine. Considering the sensitivity analysis, among the input parameters, length of stemming and charge per delay have shown the most and the least effect on the backbreak, respectively. The results of ANNs show that multilayer networks are more powerful and efficient than single-layer in prediction of backbreak.

A comparative study on the application of Regression-PSO and ANN methods to predict backbreak in open pit mines Keywords:

A comparative study on the application of Regression-PSO and ANN methods to predict backbreak in open pit mines authors

Masoud Shamsoddin Saeed

Department of Petroleum Engineering, Shahid Bahonar University of Kerman, Kerman, Iran

Hossein Jalalifar

Department of Petroleum Engineering, Shahid Bahonar University of Kerman, Kerman, Iran

Hamed Shamsoddini

Department of Petroleum Engineering, Shahid Bahonar University of Kerman, Kerman, Iran

Mohammad Darbor

Department of Mining Engineering, Sahand University of Technology, East Azarbaijan, Iran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
Abdi MJ, Giveki D (۲۰۱۳) Automatic detection of erythemato-squamous diseases ...
Assareh E, Behrang MA, Assari MR, Ghanbarzadeh A (۲۰۱۰) Application ...
Babanouri N, Karimi Nasab S, Sarafrazi S (۲۰۱۳) A hybrid ...
Bauer A (۱۹۸۲) Wall control blasting in open pits. CIM ...
Cohen J, Cohen P, West SG, Aiken LS (۲۰۰۳) Applied ...
Dreyfus G (۲۰۰۵) Neural Networks: methodology and application. Springer, Berli ...
Eberhart RC, Shi Y (۲۰۰۱) Particle swarm optimization: developments, applications ...
Gate WC, Ortiz BLT, Florez RM (۲۰۰۵) Analysis of rock ...
Ghasemi E (۲۰۱۶) Particle swarm optimization approach for forecasting backbreak ...
Ghasemi E, Kalhori H, Bagherpour R (۲۰۱۶) A new hybrid ...
Gordan B, Jahed Armaghani D, Hajihassani M, Monjezi M (۲۰۱۶) ...
Jenkins SS (۱۹۸۱) Adjusting blast design for best results. Pit ...
Jimeno CL, Jimeno EL, Carcedo FJA (۱۹۹۵) Drilling and blasting ...
Jong YH, Lee CI (۲۰۰۴) Influence of geological conditions on ...
Kahraman S, Altun H, Tezekici BS, Fener M (۲۰۰۶) Sawability ...
Kalatehjari R, Ali N, Kholghifard M, Hajihassani M (۲۰۱۴) The ...
Kennedy J, Eberhart RC (۱۹۹۵) Particle swarm optimization. In: Proceedings ...
Khandelwal M, Singh TN (۲۰۰۶) Evaluation of blast-induced ground vibration ...
Khandelwal M, Singh TN (۲۰۰۷) Evaluation of blast-induced ground vibration ...
Konya CJ (۲۰۰۳) Rock blasting and overbreak control. Washington, DC: ...
Konya CJ, Walter EJ (۱۹۹۱) Rock blasting and overbreak control. ...
Kosko B (۱۹۹۴) Neural networks and fuzzy systems: a dynamical ...
Maulenkamp F, Grima MA (۱۹۹۹) Application of neural networks for ...
Momeni E, Jahed Armaghani D, Hajihassani M, Amin MFM (۲۰۱۵) ...
Momeni E, Nazir R, Jahed Armaghani D, Maizir H (۲۰۱۴) ...
Monjezi M, Ahmadi Z, Varjani AY, Khandelwal M (۲۰۱۳) Backbreak ...
Monjezi M, Dehghani H (۲۰۰۸) Evaluation of effect of blasting ...
Monjezi M, Khoshalan HA, Varjani AY (۲۰۱۲) Prediction of flyrock ...
Monjezi M, Mehrdanesh A, Malek A, Khandelwal M (۲۰۱۳) Evaluation ...
Monjezi M, Rezaei M, Yazdian A (۲۰۱۰) Prediction of backbreak ...
Rafig MY, Bugmann G, Easterbrook DJ (۲۰۰۱) Neural network design ...
Scoble MJ, Lizotte YC, Paventi M, Mohanty BB (۱۹۹۷) Measurement ...
Simpson PK (۱۹۹۰) Artificial neural system: foundation, paradigms, applications and ...
Singh VK, Singh D, Singh TN (۲۰۰۱) Prediction of strength ...
Sumathi S, Paneerselvam S (۲۰۱۰) Computational intelligence paradigms: theory and ...
Tawadrous AS (۲۰۰۶) Evaluation of artificial neural networks as a ...
Tonnizam Mohamad E, Hajihassani M, Jahed Armaghani D, Marto A ...
Yagiz S, Karahan H (۲۰۱۱) Prediction of hard rock TBM ...
Yang Y, Zhang Q (۱۹۹۷a) Analysis for the results of ...
Zhang JR, Zhang J, Lok TM, Lyu MR (۲۰۰۷) A ...
نمایش کامل مراجع