سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

Impact of Surface Roughness on the Aerodynamic Efficiency of Wind Turbines: A New CFD-based Correlation

Publish Year: 1404
Type: Journal paper
Language: English
View: 40

This Paper With 12 Page And PDF Format Ready To Download

Export:

Link to this Paper:

Document National Code:

JR_JAFM-18-2_010

Index date: 11 December 2024

Impact of Surface Roughness on the Aerodynamic Efficiency of Wind Turbines: A New CFD-based Correlation abstract

The aerodynamic performance of wind turbines is significantly influenced by the design of their blades, which are engineered with advanced aerodynamic airfoils. However, the effectiveness of these designs is compromised by environmental factors such as dust, corrosion, sand, and insects, leading to alterations in blade shape and surface integrity over the turbine's operational period. These changes reduce the aerodynamic efficiency of the turbines. To assess these detrimental effects, this study utilizes a 3D Computational Fluid Dynamics (CFD) model based on the exact blade geometry. A modified version of the universal logarithmic wall function was implemented to quantify the influence of surface roughness. Comparative analyses between clean and rough blade surfaces under varying wind conditions showed that surface degradation significantly impacts the efficiency of wind turbines. Specifically, the findings indicate that surface roughness can lead to a substantial decrease in power output, with losses potentially reaching up to 35% under tested conditions. Notably, this roughness effect exhibits a critical value of  , beyond which the impact of roughness becomes negligible. Based on these results, an exponential correlation has been proposed. This study suggests that maintaining smooth blade surfaces or minimizing roughness is crucial for optimal turbine performance, especially under high wind conditions.

Impact of Surface Roughness on the Aerodynamic Efficiency of Wind Turbines: A New CFD-based Correlation Keywords:

Wind turbine aerodynamics , Surface Roughness Effects , Logarithmic wall function , Computational fluid dynamics (CFD) , Horizontal Axis Wind Turbine (HAWT) , CFD Correlation

Impact of Surface Roughness on the Aerodynamic Efficiency of Wind Turbines: A New CFD-based Correlation authors

A. Bouhelal

Laboratory of Green and Mechanical Development (LGMD), Ecole Nationale Polytechnique -ENP-, P.B. ۱۸۲ El-Harrach, Algiers, ۱۶۲۰۰, Algeria

M. N. Hamlaoui

Laboratory of Green and Mechanical Development (LGMD), Ecole Nationale Polytechnique -ENP-, P.B. ۱۸۲ El-Harrach, Algiers, ۱۶۲۰۰, Algeria

A. Smaili

Laboratory of Green and Mechanical Development (LGMD), Ecole Nationale Polytechnique -ENP-, P.B. ۱۸۲ El-Harrach, Algiers, ۱۶۲۰۰, Algeria

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
Anderson, C. (۲۰۲۰). Wind turbines: Theory and practice. Cambridge University ...
Boorsma, K., & Schepers, J. G. (۲۰۱۶). Rotor experiments in ...
Bouhelal, A., & Smaili, A. (۲۰۲۲a). Introduction à la CFD ...
Bouhelal, A., Guerri, O., Smaili, A., & Masson, C. (۲۰۱۸a). ...
Bouhelal, A., Smaili, A., & Guerri, O. (۲۰۱۶). Numerical study ...
Bouhelal, A., Smaili, A., Guerri, O., & Masson, C. (۲۰۱۷, ...
Bouhelal, A., Smaili, A., Guerri, O., & Masson, C. (۲۰۱۸b). ...
Bouhelal, A., Smaili, A., Guerri, O., & Masson, C. (۲۰۲۲b). ...
Cebeci, T., & Bradshaw, P. (۱۹۷۷). Momentum transfer in boundary ...
Celik, I. B., Ghia, U., Roache, P. J., & Freitas, ...
Chakroun, W., Al-Mesri, I., & Al-Fahad, S. (۲۰۰۴). Effect of ...
Drela, M. (۱۹۸۹, June). XFOIL: An analysis and design system ...
Hamlaoui, M. N., Bouhelal, A., Smaili, A., & Fellouah, H. ...
Khalfallah, M. G., & Koliub, A. M. (۲۰۰۷). Effect of ...
Launder, B. E., & Spalding, D. B. (۱۹۸۳). The numerical ...
Manwell, J. F., McGowan, J. G., & Rogers, A. L. ...
Menter, F. R. (۱۹۹۴). Two-equation eddy-viscosity turbulence models for engineering ...
Munduate, X., & Ferrer, E. (۲۰۰۹, January). CFD predictions of ...
Nikuradse, J. (۱۹۳۳). Stromungsgesetze in rauhen Rohren. Vdi-Forschungsheft, ۳۶۱, ۱ ...
Pope, S. B. (۲۰۰۱). Turbulent flows. Measurement Science and Technology, ...
Ramsay, R. F., Hoffman, M. J., & Gregorek, G. M. ...
Ren, N., & Ou, J. (۲۰۰۹). Numerical simulation of surface ...
Richardson, L. F., & Gaunt, J. A. (۱۹۲۷). VIII. The ...
Roache, P. J. (۱۹۹۴). Perspective: A method for uniform reporting ...
Sagol, E., Reggio, M., & Ilinca, A. (۲۰۱۳). Issues concerning ...
Snel, H., Houwink, R., Bosschers, J., Piers, W. J., Van ...
Snel, H., Schepers, J. G., & Montgomerie, B. (۲۰۰۷). The ...
Sørensen, N. N., Zahle, F., Boorsma, K., & Schepers, G. ...
Van Rooij, R. P. J. O. M., & Timmer, W. ...
Yakhot, V., & Orszag, S. A. (۱۹۸۶). Renormalization group analysis ...
Yigit, C. (۲۰۲۰). Effect of air-ducted blade design on horizontal ...
نمایش کامل مراجع