سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

Effect of Height on the Supersonic Flow over a Blunt Vertical Fin

Publish Year: 1404
Type: Journal paper
Language: English
View: 42

This Paper With 10 Page And PDF Format Ready To Download

Export:

Link to this Paper:

Document National Code:

JR_JAFM-18-2_007

Index date: 11 December 2024

Effect of Height on the Supersonic Flow over a Blunt Vertical Fin abstract

Understanding how protrusions, such as fins attached to flat or streamlined bodies, affect aerodynamics, especially in high-speed contexts, is vital for aerospace applications. These protrusions significantly influence overall aerodynamics and require a comprehensive understanding for accurate analysis and prediction of aerodynamic performance. This understanding is particularly critical in supersonic flight, where even minor aerodynamic disturbances can impact vehicle stability and efficiency. Therefore, a thorough understanding of protrusion-induced flow phenomena is essential for advancing aerospace engineering and improving supersonic vehicle performance and safety. The present paper focuses on the complex supersonic flow over a vertical fin, using a combination of experimental and computational methods. The study aims to understand how variations in fin height influence the behavior of the Lambda shock and any resulting changes in shock length. Specifically, the paper investigates different fin height-to-diameter (H/D) ratios ranging from 0.5 to 1.5 in steps of 0.25. To achieve this, both experimental testing in a supersonic wind tunnel and numerical simulations using the commercial CFD tool ANSYS-FLUENT are employed. Through this dual approach, the paper seeks insights into the characteristics of the Lambda shock and its effects on key aerodynamic parameters, such as shock strength and drag coefficient. By thoroughly investigating these aspects, the paper contributes to a deeper understanding of the complex flow phenomena associated with supersonic flow over vertical fins, potentially guiding the design and optimization of aerospace vehicles. The outcomes indicate that a fin height of 12 mm (H/D=1.0) provides the best balance in terms of pressure distribution, Lambda shock length, and drag coefficient, making it the optimal choice for enhancing aerodynamic stability and performance in supersonic conditions.

Effect of Height on the Supersonic Flow over a Blunt Vertical Fin Keywords:

Effect of Height on the Supersonic Flow over a Blunt Vertical Fin authors

D. Sahoo

Department of Aerospace Engineering, Graphic Era (Deemed to be University), Dehradun-۲۴۸۰۰۲, India

S. T. Kansara

Department of Aerospace Engineering, MIT Art, Design and Technology University, Pune-۴۱۲۲۰۱, India

P. Kumar

Department of Space Engineering and Rocketry, Birla Institute of Technology, Mesra, Ranchi- ۸۳۵۲۱۵, India

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
Ablaev, A. R., Dovgal, A. V., Grek, G. R., Katäsonov, ...
Berry, S. A., Horvath, T. J., DiFulvio, M., Glass, C., ...
Berry, S. A., Horvath, T. J., Hollis, B. R., Thompson, ...
Dolling, D. S., & Bogdonoff, S. M. (۱۹۷۹). Investigation of ...
Dolling, D. S., & Bogdonoff, S. M. (۱۹۸۰). Experimental study ...
Dolling, D. S., & Bogdonoff, S. M. (۱۹۸۲). An experimental ...
Dolling, D. S., & Brusniak, L. (۱۹۹۳). Flowfield dynamics in ...
Dolling, D. S., Cosad, C. D., & Bogdonoff, S. M. ...
Fox, J. S., O’Byrne, S., Houwing, A. F. P., Papinniemi, ...
Guo, S., Xu, J., Qin, Q., & Gu, R. (۲۰۱۶). ...
Hale, J. T. (۲۰۱۴). Interaction between a conical shock wave ...
Hollis, B. R., Horvath, T. J., Berry, S. A., Hamilton ...
Horvath, T. J., Berry, S. A., Hollis, B. R., Liechty, ...
Hung, C. M., & Buning, P. G. (۱۹۸۵). Simulation of ...
Knight, D. D., & Badekas, D. (۱۹۹۲). Quasiconical flowfield structure ...
Kolesnik, E. V., & Smirnov, E. M. (۲۰۲۱). Supersonic laminar ...
Kolesnik, E. V., & Smirnov, E. M. (۲۰۲۳). Duality of ...
Kolesnik, E. V., & Smirnov, E. M. (۲۰۲۴). Dual numerical ...
Kolesnik, E., Smirnov, E., & Babic, E. (۲۰۲۳). Dual numerical ...
Mortazavi, M., & Knight, D. (۲۰۱۷). Shock wave laminar boundary ...
Narayan, A., Narayanan, S., & Kumar, R. (۲۰۱۷). Hypersonic flow ...
Ngoh, H., & Poggie, J. (۲۰۲۲). Forced separation unsteadiness in ...
Poggie, J., & Smits, A. J. (۱۹۹۷). Wavelet analysis of ...
Sedney, R., & Kitchens Jr, C. W. (۱۹۷۵). The structure ...
Song, J. W., Yu, M. S., & Cho, H. H. ...
Sydney, R., & Kitchens, C. W. Jr. (۱۹۷۷). Separation ahead ...
Viswanath, P. R. (۱۹۸۸). Shock-wave-turbulent-boundary-layer interaction and its control: A ...
Wang, S. F., Ren, Z. Y., & Wang, Y. (۱۹۹۸). ...
Weng, Y., Li, Q., Tan, G., Su, W., & You, ...
Xiao, F., Li, Z., Zhang, Z., Zhu, Y., & Yang, ...
نمایش کامل مراجع