Improving Wind Turbine Power with Boundary Layer Suction
Publish place: Journal of Applied Fluid Mechanics، Vol: 18، Issue: 2
Publish Year: 1404
Type: Journal paper
Language: English
View: 36
This Paper With 11 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
Export:
Document National Code:
JR_JAFM-18-2_005
Index date: 11 December 2024
Improving Wind Turbine Power with Boundary Layer Suction abstract
Given the vast global capacity of wind turbines, even minor enhancements in their overall performance can substantially increase energy production. To achieve this, several techniques have been developed and implemented commercially to create advanced blades with improved efficiency. However, the fixed aerodynamic shape of these blades imposes certain constraints. This study conducts a numerical analysis of a 660 kW wind turbine, revealing that under specific operating conditions, the blades experience off-design conditions, leading to performance degradation. Simulations indicate that because the blades are designed for a single operating point, flow separation occurs on some sections of the blade surface in other situations. Further investigation demonstrates that the fixed geometry of the blades hinders the flow’s ability to adapt to their shape. To address this challenge, the method of boundary layer suction is proposed. Results indicate that by applying an appropriate level of suction intensity, the aerodynamic performance of the rotor can be enhanced by up to 8% under the specified working conditions by facilitating flow reattachment at the inboard section.
Improving Wind Turbine Power with Boundary Layer Suction Keywords:
Improving Wind Turbine Power with Boundary Layer Suction authors
S. Sadi
Imam Hossein Comprehensive University, Tehran, Iran
M. R. Asayesh
Department of Energy Engineering, Azad Islamic University, Tehran, Iran
S. A. Moussavi
Niroo Research Institute, Tehran, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :