A two - phase - ACO algorithm for solving nonlinear optimization problems subjected to fuzzy relational equations
Publish place: Iranian Journal of Fuzzy Systems، Vol: 21، Issue: 5
Publish Year: 1403
نوع سند: مقاله ژورنالی
زبان: English
View: 132
This Paper With 24 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJFS-21-5_009
تاریخ نمایه سازی: 21 آذر 1403
Abstract:
In this paper, we investigate nonlinear optimization problems whose constraints are defined as fuzzy relational equations (FRE) with max-min composition. Since the feasible solution set of the FRE is often a non-convex set and the resolution of the FREs is an NP-hard problem, conventional nonlinear approaches may involve high computational complexity. Based on the theoretical aspects of the problem, an algorithm (called FRE-ACO algorithm) is presented which benefits from the structural properties of the FREs, the ability of discrete ant colony optimization algorithm (denoted by ACO) to tackle combinatorial problems, and that of continuous ant colony optimization algorithm (denoted by ACOR) to solve continuous optimization problems. In the current method, the fundamental ideas underlying ACO and ACOR are combined and form an efficient approach to solve the nonlinear optimization problems constrained with such non-convex regions. Moreover, FRE-ACO algorithm preserves the feasibility of new generated solutions without having to initially find the minimal solutions of the feasible region or check the feasibility after generating the new solutions. The FRE-ACO algorithm has been compared with some related works proposed for solving nonlinearoptimization problems with respect to max-min FREs. The obtained results demonstrate that the proposed algorithm has a higher convergence rate and requires a less number of function evaluations compared to other considered algorithms.
Keywords:
Continuous ant colony optimization , Discrete ant colony optimization , Fuzzy relational equations , Max-min composition , Nonlinear optimization
Authors
Amin Ghodousian
Faculty of Engineering Science, College of Engineering, University of Tehran, P.O.Box ۱۱۳۶۵-۴۵۶۳, Tehran, Iran.
Sara Zal
Faculty of Engineering Science, College of Engineering, University of Tehran, P.O.Box ۱۱۳۶۵-۴۵۶۳, Tehran, Iran.
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :